Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assi...Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.展开更多
Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production,...Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production,we instituted a research project on the measurement methods of key performance parameters such as wind pressure,amount of ventilation and power. At the end a virtual instrument for mine ventilation fans performance evaluation was developed using a USB interface. The practical performance and analytical results of our experiments show that it is feasible,reliable and effective to use the proposed instrumentation for mine ventilation performance evaluation.展开更多
The main objective of the present study was introduced water mist suppressiontechnology to prevent and control gas burning which occurred during drilling at Wu20160working-face in No.10 coal mine of Pingdingshan Ltd.....The main objective of the present study was introduced water mist suppressiontechnology to prevent and control gas burning which occurred during drilling at Wu20160working-face in No.10 coal mine of Pingdingshan Ltd..Based on the self-developed ex-periment platform,a series of fire suppression tests to evaluate the performance of a watermist system were conducted.The detailed measurements of the spray characteristics,i.e.,the Sauter Mean Diameter(SMD),the velocity and spray angle which are the main pa-rameters considered in the Study,were obtained by using LS-2000 Sizer.The amount ofwater consumed and the water flux density distribution over the cross section downstreamthe nozzle exit were measured by cup collector method.The operating pressure of thewater mist nozzle is set to 0.5 MPa,the droplet SMD of 104 pm,the water flux density dis-tribution from 0.71 to 8.47 L/(m^2.min),the average velocity of 2.14 m/s.The experimentalresults show that the averaged time required for extinguishment is 3.14 s,and the corre-sponding amount of water used during fire test is about 0.11 kg.The gas fire suppressionsystem reduces the temperature in combustion chamber of the experimental apparatusbelow the ignition point of the gas,which can effectively avoid the occurrence of the gasfire in coal mine.展开更多
Coal bursts involve the sudden,violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise,like an explosion,and ground vibration. Bursts are a particular hazard for min...Coal bursts involve the sudden,violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise,like an explosion,and ground vibration. Bursts are a particular hazard for miners because they typically occur without warning. Despite decades of research,the sources and mechanics of these events are not well understood,and therefore they are difficult to predict and control. Experience has shown,however,that certain geologic and mining factors are associated with an increased likelihood of a coal burst. A coal burst risk assessment consists of evaluating the degree to which these risk factors are present,and then identifying appropriate control measures to mitigate the hazard. This paper summarizes the U.S. and international experience with coal bursts,and describes the known risk factors in detail. It includes a framework that can be used to guide the risk assessment process.展开更多
A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an important meaning to evaluate the security of a mine ventilation system. Th...A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an important meaning to evaluate the security of a mine ventilation system. This paper studied the evaluation index system of the security of a mine ventilation system, and the security of a mine ventilation system was described quantitatively in the safety degree. Finally, an example of the security evaluation was given.展开更多
The coal processing methods used at the Zarand coal washery plant are the heavy medium bath,jigs,and flotation.The coal-containing materials that are fed to the plant are acquired from different mines,and they have di...The coal processing methods used at the Zarand coal washery plant are the heavy medium bath,jigs,and flotation.The coal-containing materials that are fed to the plant are acquired from different mines,and they have different washability properties.In this paper,the validity of Mayer curve (M-curve),the conventional method for determining coal washability,was evaluated on blending of raw coals that are fed to the plant.Washability curves were prepared for the hand-blended samples and compared with the washability predicted by the Mayer curves.Different samples from different seams and mines were blended by hand in 50:50 ratios,and sink and float tests were performed;the resulting washability curves were in good agreement with the washability curves predicted using the Mayer method for the same blending ratio.This work resulted in the preparation of the optimum plant feed that can be achieved from the blending of different coal samples to produce the best plant yield at a given ash content.展开更多
Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams ...Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams in mines. Based on a systematic collection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factors affecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affecting water-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coal seams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluation of water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluation results provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer in the lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.展开更多
Using Cobb-Douglas production function and Solow Residual, this study establishes a discriminant index to measure the intensive index of coal-production at the section-level, so as to analyze the transfer trend of the...Using Cobb-Douglas production function and Solow Residual, this study establishes a discriminant index to measure the intensive index of coal-production at the section-level, so as to analyze the transfer trend of the growth pattern of Jiangsu's coal-production since 1990s. The research shows that the transition of coal production in Jiangsu Province has mainly experienced three phases, which are the quick transition phase from extensive growth to intensive growth (from 1990 to 1994), the fluctuation phase (from 1995 to 1999), and the transition back phase from intensive growth to extensive growth (from 2000 to 2003). On the whole, the coal production in Jiangsu Province nowadays is still featured by extensive growth pattern and largely dependent upon capital inputs. Finally, from the aspect of the technology progress, improving the qualities of labor, changing product structures and improving enterprise management, this study puts forward suggestions on how to transfer the growth pattern of Jiangsu's coal-production into intensive type.展开更多
文摘Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.
基金Project 2007E237 supported by the Science Fund Program of Shaanxi Province of China
文摘Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production,we instituted a research project on the measurement methods of key performance parameters such as wind pressure,amount of ventilation and power. At the end a virtual instrument for mine ventilation fans performance evaluation was developed using a USB interface. The practical performance and analytical results of our experiments show that it is feasible,reliable and effective to use the proposed instrumentation for mine ventilation performance evaluation.
基金Supported by the Natural Science Foundation of China(50274061,50476033)The Outstanding Talents Innovative Foundation of Henan Province of China(421000800)the Natural Science Foundation of HPU(646102)
文摘The main objective of the present study was introduced water mist suppressiontechnology to prevent and control gas burning which occurred during drilling at Wu20160working-face in No.10 coal mine of Pingdingshan Ltd..Based on the self-developed ex-periment platform,a series of fire suppression tests to evaluate the performance of a watermist system were conducted.The detailed measurements of the spray characteristics,i.e.,the Sauter Mean Diameter(SMD),the velocity and spray angle which are the main pa-rameters considered in the Study,were obtained by using LS-2000 Sizer.The amount ofwater consumed and the water flux density distribution over the cross section downstreamthe nozzle exit were measured by cup collector method.The operating pressure of thewater mist nozzle is set to 0.5 MPa,the droplet SMD of 104 pm,the water flux density dis-tribution from 0.71 to 8.47 L/(m^2.min),the average velocity of 2.14 m/s.The experimentalresults show that the averaged time required for extinguishment is 3.14 s,and the corre-sponding amount of water used during fire test is about 0.11 kg.The gas fire suppressionsystem reduces the temperature in combustion chamber of the experimental apparatusbelow the ignition point of the gas,which can effectively avoid the occurrence of the gasfire in coal mine.
文摘Coal bursts involve the sudden,violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise,like an explosion,and ground vibration. Bursts are a particular hazard for miners because they typically occur without warning. Despite decades of research,the sources and mechanics of these events are not well understood,and therefore they are difficult to predict and control. Experience has shown,however,that certain geologic and mining factors are associated with an increased likelihood of a coal burst. A coal burst risk assessment consists of evaluating the degree to which these risk factors are present,and then identifying appropriate control measures to mitigate the hazard. This paper summarizes the U.S. and international experience with coal bursts,and describes the known risk factors in detail. It includes a framework that can be used to guide the risk assessment process.
文摘A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an important meaning to evaluate the security of a mine ventilation system. This paper studied the evaluation index system of the security of a mine ventilation system, and the security of a mine ventilation system was described quantitatively in the safety degree. Finally, an example of the security evaluation was given.
基金supports for this work that were received from the Zarand coal washing R&D center and Science and Research Branch (Tehran) of Islamic Azad University
文摘The coal processing methods used at the Zarand coal washery plant are the heavy medium bath,jigs,and flotation.The coal-containing materials that are fed to the plant are acquired from different mines,and they have different washability properties.In this paper,the validity of Mayer curve (M-curve),the conventional method for determining coal washability,was evaluated on blending of raw coals that are fed to the plant.Washability curves were prepared for the hand-blended samples and compared with the washability predicted by the Mayer curves.Different samples from different seams and mines were blended by hand in 50:50 ratios,and sink and float tests were performed;the resulting washability curves were in good agreement with the washability curves predicted using the Mayer method for the same blending ratio.This work resulted in the preparation of the optimum plant feed that can be achieved from the blending of different coal samples to produce the best plant yield at a given ash content.
基金supports from the Natural Science Foundation of Shandong Province (No.Y2007F46)the Doctor Disciplines Special Scientific Research Foundation of Ministry of Education (No.20070424005)+1 种基金China Coal Industry Association Science and Technology Research Instructive Plan (No.MTKJ2009-290) the National Natural Science Foundation of China (No.50539080)
文摘Lower groups of coal seams are presently being mined from water-inrush from coal floors in order to have safe production in the Yanzhou coal mining area. We need to evaluate the risk in the lower groups of coal seams in mines. Based on a systematic collection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factors affecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affecting water-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coal seams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluation of water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluation results provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer in the lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.
文摘Using Cobb-Douglas production function and Solow Residual, this study establishes a discriminant index to measure the intensive index of coal-production at the section-level, so as to analyze the transfer trend of the growth pattern of Jiangsu's coal-production since 1990s. The research shows that the transition of coal production in Jiangsu Province has mainly experienced three phases, which are the quick transition phase from extensive growth to intensive growth (from 1990 to 1994), the fluctuation phase (from 1995 to 1999), and the transition back phase from intensive growth to extensive growth (from 2000 to 2003). On the whole, the coal production in Jiangsu Province nowadays is still featured by extensive growth pattern and largely dependent upon capital inputs. Finally, from the aspect of the technology progress, improving the qualities of labor, changing product structures and improving enterprise management, this study puts forward suggestions on how to transfer the growth pattern of Jiangsu's coal-production into intensive type.