Na2CO3, Li2CO3, and K2CO3 were used as additives to Pingshuo (PS) coal that was subsequently gasified under a CO2 stream. The catalytic gasification of coal samples by CO2 in the presence single or mixed alkali carb...Na2CO3, Li2CO3, and K2CO3 were used as additives to Pingshuo (PS) coal that was subsequently gasified under a CO2 stream. The catalytic gasification of coal samples by CO2 in the presence single or mixed alkali carbonates was investigated by thermogravimetric analysis. The experimental results indicate that the catalytic effect of Li2CO3 is significantly larger than that of Na2CO3 or K2CO3. The catalytic effect of the mixed, bi-metal carbonate containing Li2C03 and Na2C03, or Li2CO3, and K2C03, is related to the compo- sition of the catalyst and the proportion of the two components. The bi-metal carbonates having a mole ratio of 9:1 (lri:x) has the largest catalytic effect for PS coal gasification. A synergistic effect between Li and K, or Na, carbonate appears at temperatures greater than 1300 K. An un-reacted shrinking core model is suitable for kinetic analysis of catalytic gasification of coal samples in the presence of alkali carbonates. It is inappropriate, however, to evaluate the catalytic effect only by the activation energy obtained from the kinetic calculations.展开更多
In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ...In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.展开更多
基金supports of the National Natural Science Foundation of China (No.20776092)the Natural Science Foundation of Shanxi Province(No. 2008011019)+1 种基金the Shanxi Research Foundation to Returned Scholars (No. 2007-30)the Shanxi Province Basic Conditions Plat form for Science and Technology Project (No. 2010091015)
文摘Na2CO3, Li2CO3, and K2CO3 were used as additives to Pingshuo (PS) coal that was subsequently gasified under a CO2 stream. The catalytic gasification of coal samples by CO2 in the presence single or mixed alkali carbonates was investigated by thermogravimetric analysis. The experimental results indicate that the catalytic effect of Li2CO3 is significantly larger than that of Na2CO3 or K2CO3. The catalytic effect of the mixed, bi-metal carbonate containing Li2C03 and Na2C03, or Li2CO3, and K2C03, is related to the compo- sition of the catalyst and the proportion of the two components. The bi-metal carbonates having a mole ratio of 9:1 (lri:x) has the largest catalytic effect for PS coal gasification. A synergistic effect between Li and K, or Na, carbonate appears at temperatures greater than 1300 K. An un-reacted shrinking core model is suitable for kinetic analysis of catalytic gasification of coal samples in the presence of alkali carbonates. It is inappropriate, however, to evaluate the catalytic effect only by the activation energy obtained from the kinetic calculations.
基金Supported by Project from National Natural Science Foundation of China(50674111)the National key Technology R&D Program in 10th Five Years Plan of China
文摘In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.