To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
In order to enhance coal recovery ratio of open pit coal mines, a new extraction method called zonal mining system for residual coal around the end-walls is presented. The mining system can improve economic benefits b...In order to enhance coal recovery ratio of open pit coal mines, a new extraction method called zonal mining system for residual coal around the end-walls is presented. The mining system can improve economic benefits by exploiting haulage and ventilation roadways from the exposed position of coal seams by uti- lizing the existing transportation systems. Moreover, the main mining parameters have also been dis- cussed. The outcome shows that the load on coal seam roof is about 0.307 MPa and the drop step of the coal seam roof about 20.3 m when the thickness of cover and average volume weight are about 120 m and 0.023 MN/m~ respectively. With the increase of mining height and width, the coal recovery ratio can be improved. However, when recovery ratio is more than 0.85, the average stress on the coal pillar will increase tempestuously, so the recovery ratio should also be controlled to make the coal seam roof safe. Based on the numerical simulation results, it is concluded that the ratio of coal pillar width to height should be more than 1.0 to make sure the coal pillars are steady, and there are only minor dis- placements on the end-walls.展开更多
A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution...A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.展开更多
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
文摘In order to enhance coal recovery ratio of open pit coal mines, a new extraction method called zonal mining system for residual coal around the end-walls is presented. The mining system can improve economic benefits by exploiting haulage and ventilation roadways from the exposed position of coal seams by uti- lizing the existing transportation systems. Moreover, the main mining parameters have also been dis- cussed. The outcome shows that the load on coal seam roof is about 0.307 MPa and the drop step of the coal seam roof about 20.3 m when the thickness of cover and average volume weight are about 120 m and 0.023 MN/m~ respectively. With the increase of mining height and width, the coal recovery ratio can be improved. However, when recovery ratio is more than 0.85, the average stress on the coal pillar will increase tempestuously, so the recovery ratio should also be controlled to make the coal seam roof safe. Based on the numerical simulation results, it is concluded that the ratio of coal pillar width to height should be more than 1.0 to make sure the coal pillars are steady, and there are only minor dis- placements on the end-walls.
基金funded by the National Natural Science Foundation of China(No.51374201,51323004)the State Key Development Program for Basic Research of China(No.2013CB227900)the College Student’s Program for Innovation of China University of Mining and Technology of China(No.201507)
文摘A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.