To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of...To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of sub-high-temperature and sub-high-pressure deformation experiments were performed. All samples maintained primary structure, which were collected from the Qudi Mine in the southern Qinshui Basin of China. The samples were analyzed by ultimate analysis, Vitrinite Reflection(VR), Fourier Transform Infrared spectroscopy(FTIR), and Raman spectroscopy both before and after deformation experiments for contrasting. The results showed that the VR values of all samples after experiments were significantly higher than before experiments, which suggested that the metamorphism degree of anthracite coals was increased by deformation. The results also indicated that both temperature and strain rate had significant effects on the chemical structure of anthracite coals. At a high strain rate of 4×10?5 s?1, the deformation of the samples was mainly brittle in which the mechanical energy was transformed mainly into frictional energy. In this situation, all samples developed several distinct fractured surfaces and the change of chemical structures was not obvious. On the contrary, with the decrease of the strain rates, the ductile deformation was dominated and the mechanical energy was mainly transformed into strain energy, resulting in the accumulation of deformation energy confessed by increasing quantity of dislocation and creep in the coal's interior nucleus. The absorption in the aromatic ring groups increased; otherwise the absorption in the aliphatic structures and ether oxygen groups decreased rapidly. During these experiments, CO was collected from two experimental samples. The number of aromatic rings and the structure defects within the two generated gas samples increased and the degree of molecular structure orders decreased.展开更多
基金supported by National Natural Science Foundation of China(Grant No.41030422)Strategic Leading Special Science and Technology from Academy of Chinese Academy of Sciences(Grant No.XDA05030100)
文摘To study the effect of different deformation mechanisms on the chemical structure of anthracite coals and further understand the correlation between changed chemical structures and coal and gas outburst, ten groups of sub-high-temperature and sub-high-pressure deformation experiments were performed. All samples maintained primary structure, which were collected from the Qudi Mine in the southern Qinshui Basin of China. The samples were analyzed by ultimate analysis, Vitrinite Reflection(VR), Fourier Transform Infrared spectroscopy(FTIR), and Raman spectroscopy both before and after deformation experiments for contrasting. The results showed that the VR values of all samples after experiments were significantly higher than before experiments, which suggested that the metamorphism degree of anthracite coals was increased by deformation. The results also indicated that both temperature and strain rate had significant effects on the chemical structure of anthracite coals. At a high strain rate of 4×10?5 s?1, the deformation of the samples was mainly brittle in which the mechanical energy was transformed mainly into frictional energy. In this situation, all samples developed several distinct fractured surfaces and the change of chemical structures was not obvious. On the contrary, with the decrease of the strain rates, the ductile deformation was dominated and the mechanical energy was mainly transformed into strain energy, resulting in the accumulation of deformation energy confessed by increasing quantity of dislocation and creep in the coal's interior nucleus. The absorption in the aromatic ring groups increased; otherwise the absorption in the aliphatic structures and ether oxygen groups decreased rapidly. During these experiments, CO was collected from two experimental samples. The number of aromatic rings and the structure defects within the two generated gas samples increased and the degree of molecular structure orders decreased.