The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the...The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the straight and bending pipes, the pressure wave and velocity wave are accelerated by the rising of reaction rate. As the explosion progressed, with the temperature reaching approximately 3000 K, only one pressure wave and one reaction rate wave were observed, while several velocity waves were found.The larger diameter presented the highest relative pressure as well as the largest velocity increase and subsequent decrease inside the tube. The bent pipes caused both turbulence and kinetic energy to increase, resulting in the acceleration of the reaction rate. The burning time was 7.4% shorter than the burning time observed for the straight pipe. Based on these results, designing one explosion resistance device, and in the practical engineering applications, it was to be proved to meet the security requirements fully.展开更多
The numerical simulation is used to research the influence of nitrogen injection on spontaneous combustion in goaf. The spontaneous combustion mathematical model on the coupling of air flow field, oxygen concentration...The numerical simulation is used to research the influence of nitrogen injection on spontaneous combustion in goaf. The spontaneous combustion mathematical model on the coupling of air flow field, oxygen concentration field, and residual coal temperature field was established with nitrogen injection in goat'. Then the software of numerical computation was pro- grammed by Finite Volume Method. Combined with the example, the distributions of air flow field, oxygen concentration field and residual coal temperature field at different nitrogen injection volume were obtained by the software. The results show that the nitrogen injection could effectively prevent the spontaneous combustion fire in goaf and the highest temperature in goaf decreased with the nitrogen injection volume increasing. Finally, the accuracy of the numerical simulation was verified by the temperature observation in field. The achievement of this research is of theoretical and practical significance for the prevention of coal spontaneous combustion in goaf.展开更多
A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mech...A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.展开更多
基金supported by National Natural Science Foundation of China (No. 51174113)National Key Basic Research and Development Program (No. 2011CB201206)National Key Scientific Apparatus Development of Special Item (No. 2012YQ24012705)
文摘The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the straight and bending pipes, the pressure wave and velocity wave are accelerated by the rising of reaction rate. As the explosion progressed, with the temperature reaching approximately 3000 K, only one pressure wave and one reaction rate wave were observed, while several velocity waves were found.The larger diameter presented the highest relative pressure as well as the largest velocity increase and subsequent decrease inside the tube. The bent pipes caused both turbulence and kinetic energy to increase, resulting in the acceleration of the reaction rate. The burning time was 7.4% shorter than the burning time observed for the straight pipe. Based on these results, designing one explosion resistance device, and in the practical engineering applications, it was to be proved to meet the security requirements fully.
基金Supported by the National Natural Science Foundation of China (51174211)
文摘The numerical simulation is used to research the influence of nitrogen injection on spontaneous combustion in goaf. The spontaneous combustion mathematical model on the coupling of air flow field, oxygen concentration field, and residual coal temperature field was established with nitrogen injection in goat'. Then the software of numerical computation was pro- grammed by Finite Volume Method. Combined with the example, the distributions of air flow field, oxygen concentration field and residual coal temperature field at different nitrogen injection volume were obtained by the software. The results show that the nitrogen injection could effectively prevent the spontaneous combustion fire in goaf and the highest temperature in goaf decreased with the nitrogen injection volume increasing. Finally, the accuracy of the numerical simulation was verified by the temperature observation in field. The achievement of this research is of theoretical and practical significance for the prevention of coal spontaneous combustion in goaf.
基金supported by Advanced Research Center Program(No.2013073861) through the National Research Foundation of Korea
文摘A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.