期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
裂缝的微观形态对煤层气体渗透作用影响的模拟
1
作者 胡宇 《煤炭技术》 CAS 北大核心 2014年第4期270-272,共3页
为了研究裂隙微观形态对煤层气运移控制作用,根据粗糙度及其各向异性因子构建3D裂隙空间,然后在单相流条件下模拟了流体的行为,进而推演宏观渗透性能,分析了裂隙表面微观几何形态对其渗透性能的影响。结果表明,具有粗糙表面的裂隙空间... 为了研究裂隙微观形态对煤层气运移控制作用,根据粗糙度及其各向异性因子构建3D裂隙空间,然后在单相流条件下模拟了流体的行为,进而推演宏观渗透性能,分析了裂隙表面微观几何形态对其渗透性能的影响。结果表明,具有粗糙表面的裂隙空间的渗透率低于理论模型预测结果,粗糙度分形维数越高,裂隙的渗透率会增大。 展开更多
关键词 煤层气体 煤气运移 煤气渗透
下载PDF
Mechanism of CO_2 enhanced CBM recovery in China: a review 被引量:18
2
作者 QIN Yong 《Journal of China University of Mining and Technology》 EI 2008年第3期406-412,共7页
Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has b... Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has been investigated in China since the 1990s. Advances in mechanism of CO2 enhanced CBM recovery (CO2-ECBM) in China are reviewed in light of certain aspects, such as the competitive multi-component gas adsorption, sorption-induced coal swelling/shrinkage and its potential effect on CBM production and numerical simulation for CO2-ECBM recovery. Newer investigations for improving the technology are discussed. It is suggested that a comprehensive feasibility demonstration in terms of geology, technology, economics and environment-carrying capacity is necessary for a successful application of the technology for CBM recovery in China. The demonstration should be car-ried out after more investigations into such facets as the control of coal components and structure to a competitive multi-component-gas adsorption, the behavior and essence of super-critical adsorption by coal of gas, environmental and safe feasi-bility of coal mining after CO2 injection and more extensive pilot tests for CO2-ECBM recovery. 展开更多
关键词 coatbed methane CO2 injection enhanced recovery MECHANISM FEASIBILITY
下载PDF
Coal reservoir characteristics and their controlling factors in the eastern Ordos basin in China 被引量:8
3
作者 Li Guihong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1051-1058,共8页
In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas c... In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal. 展开更多
关键词 Coal reservoir Coal rank Controlling factors Eastern Ordos basin
下载PDF
Experimental study on effects of CBM temperature-rising desorption 被引量:2
4
作者 MA Dong-min LIN Ya-bing 《Journal of Coal Science & Engineering(China)》 2012年第4期350-354,共5页
To study the effects of CBM (coal bed methane) temperature-rising desorption, isothermal adsorption/desorption experiments on three ranks (anthracite, coking coal and lignite) of coal at different temperatures wer... To study the effects of CBM (coal bed methane) temperature-rising desorption, isothermal adsorption/desorption experiments on three ranks (anthracite, coking coal and lignite) of coal at different temperatures were designed based on the traditional CBM decompression desorption. The experimental results indicate that temperature-rising desorption is more effec- tive in high-rank coal, and ever-increasing temperature of high-rank coal reservoir can reduce the negative effects of coal ma- trix shrinkage in the process of production and improve the permeability of the coal reservoir as well. It is also revealed that the technique of temperature-rising desorption applied in higher-rank coal reservoir can enhance CBM recovery ratio. This study provided theoretical support for the application of temperature-rising desorption technique in practical discharging and mining projects, which can effectively tackle the gas production bottleneck problem. 展开更多
关键词 temperature-rising desorption CBM recovery ratio CBM production high-rank coal reservoir
下载PDF
Methane adsorption-induced coal swelling measured with an optical method 被引量:3
5
作者 Tang Shuheng Wan Yi +2 位作者 Duan Lijiang Xia Zhaohui Zhang Songhang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期949-953,共5页
In order to quantify the effect of matrix shrinkage on reservoir permeability during coalbed methane production, coal samples from Huozhou, Changzhi and Jincheng areas in Shanxi province (classified as high-volatile ... In order to quantify the effect of matrix shrinkage on reservoir permeability during coalbed methane production, coal samples from Huozhou, Changzhi and Jincheng areas in Shanxi province (classified as high-volatile bituminous coal, low-volatile bituminous coal and anthracite, respectively) were collected, and adsorption-induced coal swelling in methane were determined by an optical method at 40 ℃ and pressure up to 12 MPa. All three coals showed similar behavior-that swelling increased as a function of pressure up to about 10 MPa but thereafter no further increase in swelling was observed. Swelling in the direction perpendicular to the bedding plane is greater than that parallel to the bedding plane, and the differences are about 7.77-8.33%. The maximum volumetric swelling ranges from 2.73% to 3.21 %-increasing with increasing coal rank. The swelling data can be described by a modified DR model. In addition, swelling increases with the amount of adsorption. However, the increase shows a relatively slower stage followed by a relatively faster stage instead of a linear increase. Based on the assumption that sorption-induced swelling/shrinkage of coal in methane is reversible, the permeability increases induced by coal shrinkage during methane desorption was analyzed, and the results indicate that the permeability change is larger for higher rank coal in the same unit of pressure depletion. 展开更多
关键词 CoalAdsorptionMethaneSwellingPermeability
下载PDF
Gas drainage efficiency improvement by increasing coalbed permeability using waterjet cutting system 被引量:2
6
作者 LU Ting-kan ZHOU Ting-yang YU Hong 《Journal of Coal Science & Engineering(China)》 2010年第2期150-156,共7页
This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted... This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted in Rujigou Colliery, Shenhua Ningxia Coal Group demonstrate that the coalbed permeability is increased, and accordingly, gas drainage efficiency is improved up to 3 to 6 times over the traditional methods using high pressure waterjet technique.Also, based on the monitoring data, the conceptual model for gas drainage process associated with different mining activities has been proposed, and few major advantages using waterjet assistance method have been identified. 展开更多
关键词 PERMEABILITY coalbed gas drainage waterjet Iongwalling
下载PDF
Technique of coal mining and gas extraction without coal pillar in multi-seam with low permeability 被引量:5
7
作者 YUAN Liang 《Journal of Coal Science & Engineering(China)》 2009年第2期120-128,共9页
Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep le... Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability. 展开更多
关键词 coal seam with low permeability without coal-pillar gob-side roadway retaining roadway retaining and borehole drilling coal mining and gas extraction
下载PDF
Calculation of gas content in coal seam influenced by in-situ stress grads and ground temperature 被引量:1
8
作者 王宏图 李时雨 +3 位作者 吴再生 杨晓峰 秦大亮 杜云贵 《Journal of Coal Science & Engineering(China)》 2002年第2期60-64,共5页
On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new cal... On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal bed gas pressure with the computing results of coal bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine. 展开更多
关键词 gas content in coal seam coal bed gas in situ stress grads ground temperature
下载PDF
The experiment study on slippage effect of the coal-bed methane transfusion
9
作者 彭晓华 潘一山 +1 位作者 肖晓春 陈长华 《Journal of Coal Science & Engineering(China)》 2008年第4期530-533,共4页
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa... When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect. 展开更多
关键词 coal-bed methane the transfusion slippage effect
下载PDF
Drainage feature about coalbed methane wells in different hydrogeological conditions in Fanzhuang area 被引量:1
10
作者 NI Xiao-ming LIN Ran WANG Yan-bin 《Journal of Coal Science & Engineering(China)》 2012年第4期344-349,共6页
It is an important guarantee to enhance the production of coalbed methane (CBM) and reduce the project invest- ment by finding out the drainage feature about CBM wells in different hydrogeological conditions. Based ... It is an important guarantee to enhance the production of coalbed methane (CBM) and reduce the project invest- ment by finding out the drainage feature about CBM wells in different hydrogeological conditions. Based on the CBM explora- tion and development data on the Fanzhuang block in southeast Qinshui Basin and combined with the seepage principle and lithology on the roof and the bottom coalbed, the mathematical model of integrated permeability was established. By perme- ability experiments of the different lithologies on the roof and the floor within the 20 m range combined with the log curves, the integrated permeability of different lithological combinations were obtained. The starting pressure gradient and permeabi- lity of the roof and the floor for different lithologies was tested by "differential pressure-flow method". The relationships be- tween the starting pressure gradient and the integrated permeability were obtained. The critical distance of limestone water penetrating into coal reservoirs was calculated. According to the drainage feature of CBM wells combined with the drainage data of some CBM wells, the results show that, when limestone water can penetrate into coal reservoirs, the daily water production is high and the daily gas production is low although there is no gas at the beginning of the drainage process, the CBM wells stop discharging water within 6 months after the gas began to come out, and the gas production is steadily improved. When limestone water can not penetrate into coal reservoirs, the daily water production is low and the daily gas production is high at the beginning of the drainage process, and it almost stops discharging water after some time when the gas come out, the daily gas production increases, and the cumulative water production is much lower. 展开更多
关键词 coalbed methane hydrogeologicalv condition drainage feature water production Fanzhuang area
下载PDF
A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal 被引量:6
11
作者 Li Bo Wei Jianping +2 位作者 Wang Kai Li Peng Wang Ke 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期637-641,共5页
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressur... This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam. 展开更多
关键词 Permeability coefficient Coal seam Effective pressure Loaded coal Pore pressure
下载PDF
Possibilities of Increasing the Effectiveness of Mining Methane Drainage in Conditions of Low Permeability of Coal Seams
12
作者 Nikodem Szlazak Dariusz Obracaj Justyna Swolkien 《Journal of Energy and Power Engineering》 2014年第7期1167-1176,共10页
There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floo... There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floor sub-economic seams has the greatest share in total methane emission to workings. Effective CMM (coal mine methane) capture is used from goaf in advance or after mining. However, due to longwall mining and ventilation systems, it is not always possible to capture methane from strata. This paper presents a method of increasing the permeability of coal seams and a method of drilling boreholes towards goaf. Initial results of the effectiveness of methane capture after applying these methods are presented. 展开更多
关键词 Drainage effectiveness coal mine methane drainage methane emission permeability of coal seams.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部