期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
钢铁企业煤气预测与调度优化系统 被引量:3
1
作者 栾绍峻 吴秀婷 《冶金经济与管理》 2018年第6期17-21,共5页
钢铁行业面临着巨大的节能减排压力,提高能源利用效率成为钢铁企业的内在需求和必然选择。煤气是钢铁企业在生产过程中产生的重要二次能源,占企业总能源消耗的30%左右。因此,减少煤气放散,提高煤气综合利用效率,降低能源成本,履行社会责... 钢铁行业面临着巨大的节能减排压力,提高能源利用效率成为钢铁企业的内在需求和必然选择。煤气是钢铁企业在生产过程中产生的重要二次能源,占企业总能源消耗的30%左右。因此,减少煤气放散,提高煤气综合利用效率,降低能源成本,履行社会责任,对实现企业可持续发展尤为重要。基于该目标,首先介绍了钢铁企业煤气系统的组成,然后对煤气平衡及煤气调度问题进行了分析,最后对钢铁企业煤气预测与调度优化系统的系统目标、系统模型、系统功能及实施效果进行了介绍。通过建立模型和系统对煤气的产生与消耗进行预测,保证煤气系统的平衡,减少煤气放散,提高煤气利用率,实现节能降耗。 展开更多
关键词 钢铁企业 煤气产生预测 煤气消耗预测 煤气调度优化 动态模型放散
下载PDF
Forecasting and optimal probabilistic scheduling of surplus gas systems in iron and steel industry 被引量:5
2
作者 李磊 李红娟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1437-1447,共11页
To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before app... To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules. 展开更多
关键词 surplus gas prediction probabilistic scheduling iron and steel enterprise HP filter Elman neural network(ENN) least squares support vector machine(LSSVM) Markov chain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部