期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
自适应变系数PSO-RBF算法及其在预测工程的应用 被引量:2
1
作者 林大志 王锐利 《现代电子技术》 北大核心 2016年第11期113-115,共3页
RBF神经网络对于非线性预测具有较好的效果,但是其存在容易陷入局部最小值以及收敛速度慢等缺点,研究一种自适应变系数PSO算法对RBF神经网络的初始参数进行优化,之后由RBF神经网络对粒子群算法优化后的网络参数进行精细优化,从而提高神... RBF神经网络对于非线性预测具有较好的效果,但是其存在容易陷入局部最小值以及收敛速度慢等缺点,研究一种自适应变系数PSO算法对RBF神经网络的初始参数进行优化,之后由RBF神经网络对粒子群算法优化后的网络参数进行精细优化,从而提高神经网络的稳定性以及收敛效率和精度等。自适应变系数PSO算法主要是将自适应递减和递增因子以及自适应调节惯性权重算子策略引入到常规的PSO算法中,从而改进算法在搜索空间中的遍历性,提高寻找全局最优解的概率,提高收敛精度和效率。最后,以炼钢过程中的煤气消耗量与钢铁产量的非线性关系作为预测实例进行研究,使用结果表明,研究的基于自适应变系数PSO-RBF神经网络的预测模型具有很好的预测能力,能够在预测工程中发挥较大的作用。 展开更多
关键词 非线性预测 RBF神经网络 自适应变系数粒子群算法 煤气量预测
下载PDF
Application of seismic multi-attribute fusion method based on D-S evidence theory in prediction of CBM-enriched area 被引量:1
2
作者 祁雪梅 张绍聪 《Applied Geophysics》 SCIE CSCD 2012年第1期80-86,116,117,共9页
D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated... D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible. 展开更多
关键词 D-S evidence theory CBM seismic attributes thsion
下载PDF
Productivity matching and quantitative prediction of coalbed methane wells based on BP neural network 被引量:9
3
作者 LU YuMin TANG DaZhen +1 位作者 XU Hao TAO Shu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1281-1286,共6页
It is a great challenge to match and predict the production performance of coalbed methane (CBM) wells in the initial production stage due to heterogeneity of coalbed, uniqueness of CBM production process, complexity ... It is a great challenge to match and predict the production performance of coalbed methane (CBM) wells in the initial production stage due to heterogeneity of coalbed, uniqueness of CBM production process, complexity of porosity-permeability variation and difficulty in obtaining some key parameters which are critical for the conventional prediction methods (type curve, material balance and numerical simulation). BP neural network, a new intelligent technique, is an effective method to deal with nonlinear, instable and complex system problems and predict the short-term change quantitatively. In this paper a BP neural model for the CBM productivity of high-rank CBM wells in Qinshui Basin was established and used to match the past gas production and predict the futural production performance. The results from two case studies showed that this model has high accuracy and good reliability in matching and predicting gas production with different types and different temporal resolutions, and the accuracy increases as the number of outliers in gas production data decreases. Therefore, the BP network can provide a reliable tool to predict the production performance of CBM wells without clear knowledge of coalbed reservoir and sufficient production data in the early development stage. 展开更多
关键词 BP neural network coalbed methane well productivity matching quantitative prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部