为了实现对粉煤灰提取氧化铝残渣的利用,对粉煤灰提铝残渣的颗粒特性及处理含Cr3+酸性溶液的效果与机理进行研究,通过对该粉煤灰提铝残渣进行化学成分、物相、比表面积、形貌等分析,对残渣的颗粒特性进行分析研究。结果表明:该残渣化学...为了实现对粉煤灰提取氧化铝残渣的利用,对粉煤灰提铝残渣的颗粒特性及处理含Cr3+酸性溶液的效果与机理进行研究,通过对该粉煤灰提铝残渣进行化学成分、物相、比表面积、形貌等分析,对残渣的颗粒特性进行分析研究。结果表明:该残渣化学成分主要为Ca(OH)2、Ca2Si O4,结构疏松多孔,具有较大的比表面积,并且具有强碱性;基于残渣的特点,将其用于处理含重金属Cr3+的酸性溶液,用0.12 g的残渣可使100 m L Cr2(SO4)3质量分数为1.598×10-3的酸性溶液中Cr3+去除率达到99%,溶液p H由2.54增大为6.01;处理后的Cr3+几乎完全以Cr2O3形式沉淀。展开更多
Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum w...Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum were investigated comprehensively. The phase and morphology of coal fly ash and solid residues after reaction were analyzed by XRD, SEM and IR. The optimal technological conditions for extracting aluminum from coal fly ash were eventually confirmed that coal fly ash with size of 74 μm and sulfuric acid with concentration of 50% are mixed in pressure reaction kettle to react for 4 h at 180 ℃. Under the optimal conditions, the extraction efficiency of aluminum can reach 82.4%.展开更多
NH4HSO4 roasting technology was used for preparing Al2O3 from fly ash. First, Al and Fe were extracted from fly ash by NH4HSO4 roasting and deionized water leaching. Then, the Al and Fe in the leached liquid were prec...NH4HSO4 roasting technology was used for preparing Al2O3 from fly ash. First, Al and Fe were extracted from fly ash by NH4HSO4 roasting and deionized water leaching. Then, the Al and Fe in the leached liquid were precipitated by adding NH4HCO3 solution. After the mixed precipitations of Al(OH)3 and Fe(OH)3 were leached by NaOH solution, the NaAl(OH)4 solution was decomposed by carbonation. Finally, the pure Al(OH)3 was calcined to α-Al2O3. The optimal conditions of the whole technology were determined by experiments. The quality ofa-Al2O3 product is up to the technical indicator of YS/T 274-1998 standard.展开更多
According to the chemical and mineral composition characteristics of the fly ash,alumina can be extracted from fly ash through the calcining method by using sodium carbonate and calcium carbonate additives.The effects...According to the chemical and mineral composition characteristics of the fly ash,alumina can be extracted from fly ash through the calcining method by using sodium carbonate and calcium carbonate additives.The effects on leaching rate of alumina have been investigated. The results showed that the fly ash can be activated effectively and the leaching rate of alumina can be improved to more than 92% through this method. The best process parameters were the ratio of raw materials,i. e. the material weight ratio of fly ash,calcium carbonate and sodium carbonate was 1. 0∶1. 2∶0. 9. The activating temperature was 850℃-900℃,activating time was 3 h. This process has a potential application prospect and improves the value of comprehensive utilization of fly ash.展开更多
文摘为了实现对粉煤灰提取氧化铝残渣的利用,对粉煤灰提铝残渣的颗粒特性及处理含Cr3+酸性溶液的效果与机理进行研究,通过对该粉煤灰提铝残渣进行化学成分、物相、比表面积、形貌等分析,对残渣的颗粒特性进行分析研究。结果表明:该残渣化学成分主要为Ca(OH)2、Ca2Si O4,结构疏松多孔,具有较大的比表面积,并且具有强碱性;基于残渣的特点,将其用于处理含重金属Cr3+的酸性溶液,用0.12 g的残渣可使100 m L Cr2(SO4)3质量分数为1.598×10-3的酸性溶液中Cr3+去除率达到99%,溶液p H由2.54增大为6.01;处理后的Cr3+几乎完全以Cr2O3形式沉淀。
基金Project (BO210(2008)) supported by the Foundation of "Hundred Talent Program" of Chinese Academic of SciencesProject (2008-G-158) supported by the Scientific and Technological Project of Qinghai Province, China
文摘Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum were investigated comprehensively. The phase and morphology of coal fly ash and solid residues after reaction were analyzed by XRD, SEM and IR. The optimal technological conditions for extracting aluminum from coal fly ash were eventually confirmed that coal fly ash with size of 74 μm and sulfuric acid with concentration of 50% are mixed in pressure reaction kettle to react for 4 h at 180 ℃. Under the optimal conditions, the extraction efficiency of aluminum can reach 82.4%.
基金Project(2007CB613603)supported by the National Basic Research Program of ChinaProject(2013M530934)supported by the China Postdoctoral Science Foundation
文摘NH4HSO4 roasting technology was used for preparing Al2O3 from fly ash. First, Al and Fe were extracted from fly ash by NH4HSO4 roasting and deionized water leaching. Then, the Al and Fe in the leached liquid were precipitated by adding NH4HCO3 solution. After the mixed precipitations of Al(OH)3 and Fe(OH)3 were leached by NaOH solution, the NaAl(OH)4 solution was decomposed by carbonation. Finally, the pure Al(OH)3 was calcined to α-Al2O3. The optimal conditions of the whole technology were determined by experiments. The quality ofa-Al2O3 product is up to the technical indicator of YS/T 274-1998 standard.
文摘According to the chemical and mineral composition characteristics of the fly ash,alumina can be extracted from fly ash through the calcining method by using sodium carbonate and calcium carbonate additives.The effects on leaching rate of alumina have been investigated. The results showed that the fly ash can be activated effectively and the leaching rate of alumina can be improved to more than 92% through this method. The best process parameters were the ratio of raw materials,i. e. the material weight ratio of fly ash,calcium carbonate and sodium carbonate was 1. 0∶1. 2∶0. 9. The activating temperature was 850℃-900℃,activating time was 3 h. This process has a potential application prospect and improves the value of comprehensive utilization of fly ash.