The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content...The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content.A series of tests including X-ray diffraction,Fourier transform infrared spectroscopy,scanning electron microscopy,physical adsorption and unconfined compressive strength were used to investigate this effect.The results indicate that the higher water content has an adverse effect on the alkali activation and microstructural properties of geopolymer,so the optimum mass ratio of sodium sulfate in alkali-activated geopolymer under different water-to-binder ratios shows a“peak shifting”phenomenon,i.e.,the higher the water-to-binder ratio,the higher the optimum mass ratio.Lower presence of sodium sulfate has no significant effect on the alkali-activated geopolymer systems;higher addition of sodium sulfate,however,could cause the symmetrical stretching vibration of Si—O and the symmetrical stretching vibration of Si—O—Si and Al—O—Si,and promote the formation of N-A-S-H gels.Furthermore,the cement effect of the gel and sodium sulfate aggregate could improve the integrity of pore structure obviously.The maximum strength of geopolymer curing at ambient temperature was 52 MPa.This study obtains the rule that the strength properties of alkali-activated geopolymers vary with the water-to-binder ratio and sodium sulfate content.The feasibility of geopolymer co-activated by sodium sulfate and sodium silicate was investigated,and reference for engineering application of alkali-activated geopolymer in salt-bearing areas was provided.展开更多
Aiming at the problem of the existing sorting for microstructure of fly ash, an improved scheme was put forward in this paper. First, fly ash particles are divided into four groups as low calcium, iron, high calcium a...Aiming at the problem of the existing sorting for microstructure of fly ash, an improved scheme was put forward in this paper. First, fly ash particles are divided into four groups as low calcium, iron, high calcium and char particle according to the substance components of fly ash. Then fly ash particles are divided into 14 sub groups, for example: cenospheres, plerospheres, solid spheres, porous char and dense char based on their chemical composition, shape and the characteristics of inner structure of fly ash. It has a distinct difference in granule configuration, inner structure and substance components. Some disadvantages of the existing scheme such as unilateralism and imprecision have been overcome in the advanced schemes.展开更多
The time-dependent rheological behaviors of alkali-activated cement(AAC)are expected to be precisely controlled,in order to meet the requirements of modern engineering practices.In this paper,the effects of activator,...The time-dependent rheological behaviors of alkali-activated cement(AAC)are expected to be precisely controlled,in order to meet the requirements of modern engineering practices.In this paper,the effects of activator,including the Na_(2)O concentration and SiO_(2)/Na_(2)O(S/N)molar ratio,on the rheological behavior of alkali-activated slag fly ash pastes were investigated.The small amplitude oscillatory shear(SAOS)and shear test were used to evaluate the structural build-up and flowability of pastes.Besides,zeta potential measurement,calorimetric test and thermogravimetric analysis(TGA)were carried out to reveal the physico-chemical mechanisms behind the rheological evolution of fresh pastes.It was found that high Na_(2)O concentration and low S/N molar ratio improved the flowability and structural build-up rate of paste.Moreover,the structural build-up of alkali-activated slag-fly ash pastes consists of two stages,which is controlled by the dissolution of solid reactants and formation of C-(A)-S-H gels,respectively.展开更多
The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior...The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior of corncob ash(CCA) collected from the gasification of corncobs in a pilot-scale gasification station were investigated by using some experimental methods.Based on the chemical composition results,the agglomeration tendency of CCA from combustion and gasification process was also analyzed.Chemical analysis shows that the fly ash is mainly composed of inorganic matters formed by K,Mg,Ca,Na,Fe,Al,S,etc.The agglomeration characteristics indicate that the slagging degree increases with the increase of ashing temperature,and the slagging tendency of these CCA samples from gasification or combustion is different with various slagging indices.All CCA samples from combustion or gasification can cause slagging/fouling problems in thermal conversion systems.The applications of CCA are closely related to its performances,and CCA has the potential to be used in various fields,for example,as a material for ceramic products and activated carbon,as an adsorbent,as a crude fertilizer,and as a structural material.展开更多
To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemica...To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.展开更多
Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estima...Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estimation of amorphous structures of ashes can be successfully obtained through the analyses of solid state NMR spectra. Viscosity of molten ash and its changes with CaCO3 addition were also evaluated up to 1 700 ℃ by using a rotary type viscometer. Glasses with poor crystalline and amorphous phase were continuously formed through the eutectic reaction of silica above fusing temperature (FT〉1 500 ℃) that caused broadening and shift of 29Si and 27A1 peaks in NMR results. With the additional amount of CaCO3 increasing, the peaks shifted to downfield obviously; the fraction of Si(OA1)0(OSi)4 decreased, while that of Si(OA1)l(OSi)l at 84.3 x 10-6 increased apparently. These transitions indicated the destruction of large alumina-silicate framework into small segments by the addition of Ca ion.展开更多
基金Project(51878322)supported by the National Natural Science Foundation of ChinaProject(18YF1FA112)supported by Key Research and Development Program of Gansu Province,China。
文摘The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content.A series of tests including X-ray diffraction,Fourier transform infrared spectroscopy,scanning electron microscopy,physical adsorption and unconfined compressive strength were used to investigate this effect.The results indicate that the higher water content has an adverse effect on the alkali activation and microstructural properties of geopolymer,so the optimum mass ratio of sodium sulfate in alkali-activated geopolymer under different water-to-binder ratios shows a“peak shifting”phenomenon,i.e.,the higher the water-to-binder ratio,the higher the optimum mass ratio.Lower presence of sodium sulfate has no significant effect on the alkali-activated geopolymer systems;higher addition of sodium sulfate,however,could cause the symmetrical stretching vibration of Si—O and the symmetrical stretching vibration of Si—O—Si and Al—O—Si,and promote the formation of N-A-S-H gels.Furthermore,the cement effect of the gel and sodium sulfate aggregate could improve the integrity of pore structure obviously.The maximum strength of geopolymer curing at ambient temperature was 52 MPa.This study obtains the rule that the strength properties of alkali-activated geopolymers vary with the water-to-binder ratio and sodium sulfate content.The feasibility of geopolymer co-activated by sodium sulfate and sodium silicate was investigated,and reference for engineering application of alkali-activated geopolymer in salt-bearing areas was provided.
文摘Aiming at the problem of the existing sorting for microstructure of fly ash, an improved scheme was put forward in this paper. First, fly ash particles are divided into four groups as low calcium, iron, high calcium and char particle according to the substance components of fly ash. Then fly ash particles are divided into 14 sub groups, for example: cenospheres, plerospheres, solid spheres, porous char and dense char based on their chemical composition, shape and the characteristics of inner structure of fly ash. It has a distinct difference in granule configuration, inner structure and substance components. Some disadvantages of the existing scheme such as unilateralism and imprecision have been overcome in the advanced schemes.
基金Project(2017 YFB 0310100)supported by National Key R&D Program of ChinaProjects(51778629,51922109)supported by the National Natural Science Foundation of ChinaProjects(2020 zzts 617,2020 CX 011)supported by the Innovation-Driven Project of Central South University,China。
文摘The time-dependent rheological behaviors of alkali-activated cement(AAC)are expected to be precisely controlled,in order to meet the requirements of modern engineering practices.In this paper,the effects of activator,including the Na_(2)O concentration and SiO_(2)/Na_(2)O(S/N)molar ratio,on the rheological behavior of alkali-activated slag fly ash pastes were investigated.The small amplitude oscillatory shear(SAOS)and shear test were used to evaluate the structural build-up and flowability of pastes.Besides,zeta potential measurement,calorimetric test and thermogravimetric analysis(TGA)were carried out to reveal the physico-chemical mechanisms behind the rheological evolution of fresh pastes.It was found that high Na_(2)O concentration and low S/N molar ratio improved the flowability and structural build-up rate of paste.Moreover,the structural build-up of alkali-activated slag-fly ash pastes consists of two stages,which is controlled by the dissolution of solid reactants and formation of C-(A)-S-H gels,respectively.
基金Project(2013020137)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2015-36)supported by Rural Energy Comprehensive Construction Foundation of the Ministry of Agriculture,China
文摘The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior of corncob ash(CCA) collected from the gasification of corncobs in a pilot-scale gasification station were investigated by using some experimental methods.Based on the chemical composition results,the agglomeration tendency of CCA from combustion and gasification process was also analyzed.Chemical analysis shows that the fly ash is mainly composed of inorganic matters formed by K,Mg,Ca,Na,Fe,Al,S,etc.The agglomeration characteristics indicate that the slagging degree increases with the increase of ashing temperature,and the slagging tendency of these CCA samples from gasification or combustion is different with various slagging indices.All CCA samples from combustion or gasification can cause slagging/fouling problems in thermal conversion systems.The applications of CCA are closely related to its performances,and CCA has the potential to be used in various fields,for example,as a material for ceramic products and activated carbon,as an adsorbent,as a crude fertilizer,and as a structural material.
基金Project(50808184) supported by the National Natural Science Foundation of China
文摘To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.
文摘Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estimation of amorphous structures of ashes can be successfully obtained through the analyses of solid state NMR spectra. Viscosity of molten ash and its changes with CaCO3 addition were also evaluated up to 1 700 ℃ by using a rotary type viscometer. Glasses with poor crystalline and amorphous phase were continuously formed through the eutectic reaction of silica above fusing temperature (FT〉1 500 ℃) that caused broadening and shift of 29Si and 27A1 peaks in NMR results. With the additional amount of CaCO3 increasing, the peaks shifted to downfield obviously; the fraction of Si(OA1)0(OSi)4 decreased, while that of Si(OA1)l(OSi)l at 84.3 x 10-6 increased apparently. These transitions indicated the destruction of large alumina-silicate framework into small segments by the addition of Ca ion.