If assortment priee parity of Clase coking coal and its qtalty price danrcnee is nonreasonable, it deren't gulde in Anprotrig tbe quallry metaliurgical coking coal and may be influence theeconomic benefit of me...If assortment priee parity of Clase coking coal and its qtalty price danrcnee is nonreasonable, it deren't gulde in Anprotrig tbe quallry metaliurgical coking coal and may be influence theeconomic benefit of metallurgical enterprises. This paper propose the principles and mathematicmodel for determination aseortment party of clean cokingcoal and its quality difference of ash content in clean coking coal in order to urge wasbenes into producing superior clean coking cleal whichis under condition of consideration both interest waskeries and interest metallurgicai industry. It canbe used as a method in theory to make price strategies under condition of socialism maket economicfor washeries of clean coking coal展开更多
Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications...Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications such as the fuel for integrated gasification combined cycle plant (IGCC), the ash content in the coal should preferably be below 15 %. Indian coals are characterized by high inter-grown ash content mainly due to 'drift origin' of Gondwana formation in Permian age. This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals. A non- coking coal sample of vitrinite type from India was ground to 44 ~tm (dso) and subjected to column flotation to improve its quality. The non-coking coal analyzing 34.6 % ash, 26.2 % volatile matter, 1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters, namely, froth depth, superficial feed velocity and superficial air velocity. The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.展开更多
文摘If assortment priee parity of Clase coking coal and its qtalty price danrcnee is nonreasonable, it deren't gulde in Anprotrig tbe quallry metaliurgical coking coal and may be influence theeconomic benefit of metallurgical enterprises. This paper propose the principles and mathematicmodel for determination aseortment party of clean cokingcoal and its quality difference of ash content in clean coking coal in order to urge wasbenes into producing superior clean coking cleal whichis under condition of consideration both interest waskeries and interest metallurgicai industry. It canbe used as a method in theory to make price strategies under condition of socialism maket economicfor washeries of clean coking coal
文摘Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications such as the fuel for integrated gasification combined cycle plant (IGCC), the ash content in the coal should preferably be below 15 %. Indian coals are characterized by high inter-grown ash content mainly due to 'drift origin' of Gondwana formation in Permian age. This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals. A non- coking coal sample of vitrinite type from India was ground to 44 ~tm (dso) and subjected to column flotation to improve its quality. The non-coking coal analyzing 34.6 % ash, 26.2 % volatile matter, 1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters, namely, froth depth, superficial feed velocity and superficial air velocity. The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.