Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, i...Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, it is held that, the notable energy imbalance of furnace exit, ever existing in the tangential firing boilers has been solved, with comparatively lower NOX emission concentration of gained. The higher NOX emission concentration and furnace slagging etc. problems existing in wall firing boilers are notable. The comprehensive analysis shows that, it is appropriate to choose lower furnace volume heat release rate and higher flame height in the type selection design of boilers, and sufficient margin should be kept in the selection of coal pulverizing mills.展开更多
Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling usi...Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation. The carbon content and the size distribu-tions of the char samples were obtained. The char morphology was examined using a field emission scanning electron microscope (FESEM). The char sampling was performed on this type of boiler for the first time. The results indicate that the flexibility of this boiler burning low quality coals under a moderate boiler load is better than its flexibility under a high boiler load. Because of the insufficient capacity of the coal pulverizers used,in case of low coal quality the pul-verized coal fineness will drastically decrease under high boiler loads. This causes an increase in the loss due to incom-plete mechanical and chemical combustion. This is the main cause of a low burnout degree of the pulverized coal and the decrease of the flexibility of this AF boiler under a high boiler load.展开更多
Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A c...Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.展开更多
文摘Large size utility boilers develop rapidly in China, both their reliability and economics have reached better level. The operating situations of various existing boilers on the basis of different coals are analyzed, it is held that, the notable energy imbalance of furnace exit, ever existing in the tangential firing boilers has been solved, with comparatively lower NOX emission concentration of gained. The higher NOX emission concentration and furnace slagging etc. problems existing in wall firing boilers are notable. The comprehensive analysis shows that, it is appropriate to choose lower furnace volume heat release rate and higher flame height in the type selection design of boilers, and sufficient margin should be kept in the selection of coal pulverizing mills.
基金Projects 2006AA05Z301 supported by the Hi-tech Research and Development Program of China50636010 by the National Natural Science Foundation of China
文摘Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation. The carbon content and the size distribu-tions of the char samples were obtained. The char morphology was examined using a field emission scanning electron microscope (FESEM). The char sampling was performed on this type of boiler for the first time. The results indicate that the flexibility of this boiler burning low quality coals under a moderate boiler load is better than its flexibility under a high boiler load. Because of the insufficient capacity of the coal pulverizers used,in case of low coal quality the pul-verized coal fineness will drastically decrease under high boiler loads. This causes an increase in the loss due to incom-plete mechanical and chemical combustion. This is the main cause of a low burnout degree of the pulverized coal and the decrease of the flexibility of this AF boiler under a high boiler load.
基金Project 50636010 supported by the National Natural Science Foundation of China
文摘Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.