期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于轻量化PAM-M-YOLO模型的煤矸石图像检测
1
作者
郭栋梁
张延军
《矿业研究与开发》
CAS
北大核心
2024年第5期220-227,共8页
针对传统煤矸石检测算法中人为提取煤矸石图像特征过程复杂、检测精度低等问题,提出了一种轻量化的PAM-M-YOLO煤矸石检测模型。首先,使用MobileNetv3特征提取网络替换原模型主干网络,采用深度可分离卷积替换传统卷积进行煤矸石图像的特...
针对传统煤矸石检测算法中人为提取煤矸石图像特征过程复杂、检测精度低等问题,提出了一种轻量化的PAM-M-YOLO煤矸石检测模型。首先,使用MobileNetv3特征提取网络替换原模型主干网络,采用深度可分离卷积替换传统卷积进行煤矸石图像的特征提取;其次,设计PAM并联注意力模块提升目标检测网络层拼接后特征图通道和空间信息关注度;最后,基于CAM激活限制分支给模型添加先验信息,以降低模型在非关键特征上的局部坍塌。试验结果表明,轻量化PAM-M-YOLO煤矸石检测模型准确率、召回率、mAP值分别为98.7%、97.5%、98.8%,较原M-YOLO模型分别提升了3.6,2.3,2.0个百分点;参数量为3.8 MB,比YOLOv5模型降低了近1/2。热力图可视化效果表明,轻量化PAM-M-YOLO模型在检测过程中所关注的信息更集中于煤矸石区域,有效解决了模型在煤矸石区域的局部坍塌问题。
展开更多
关键词
煤矸石图像检测
YOLOv5模型
轻量化PAM-M-YOLO模型
深度学习
注意力机制
损失函数
原文传递
题名
基于轻量化PAM-M-YOLO模型的煤矸石图像检测
1
作者
郭栋梁
张延军
机构
太原科技大学机械工程学院
出处
《矿业研究与开发》
CAS
北大核心
2024年第5期220-227,共8页
文摘
针对传统煤矸石检测算法中人为提取煤矸石图像特征过程复杂、检测精度低等问题,提出了一种轻量化的PAM-M-YOLO煤矸石检测模型。首先,使用MobileNetv3特征提取网络替换原模型主干网络,采用深度可分离卷积替换传统卷积进行煤矸石图像的特征提取;其次,设计PAM并联注意力模块提升目标检测网络层拼接后特征图通道和空间信息关注度;最后,基于CAM激活限制分支给模型添加先验信息,以降低模型在非关键特征上的局部坍塌。试验结果表明,轻量化PAM-M-YOLO煤矸石检测模型准确率、召回率、mAP值分别为98.7%、97.5%、98.8%,较原M-YOLO模型分别提升了3.6,2.3,2.0个百分点;参数量为3.8 MB,比YOLOv5模型降低了近1/2。热力图可视化效果表明,轻量化PAM-M-YOLO模型在检测过程中所关注的信息更集中于煤矸石区域,有效解决了模型在煤矸石区域的局部坍塌问题。
关键词
煤矸石图像检测
YOLOv5模型
轻量化PAM-M-YOLO模型
深度学习
注意力机制
损失函数
Keywords
Coal gangue image detection
YOLOv5 model
Light-weighted PAM-M-YOLO model
Deep learning
Attention mechanism
Lossfunction
分类号
TD849.5 [矿业工程—煤矿开采]
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于轻量化PAM-M-YOLO模型的煤矸石图像检测
郭栋梁
张延军
《矿业研究与开发》
CAS
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部