期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO-BP神经网络的煤矿井下自适应定位算法 被引量:10
1
作者 崔丽珍 许凡非 +1 位作者 王巧利 高丽丽 《工矿自动化》 北大核心 2018年第2期74-79,共6页
提出了一种基于PSO-BP神经网络的煤矿井下自适应定位算法。针对传统的基于测距模型的定位算法易受煤矿井下环境干扰、测距误差大的问题,选择指纹匹配定位模型。针对煤矿井下环境强时变性,易增大实时采集的指纹信息与离线阶段建立的静态... 提出了一种基于PSO-BP神经网络的煤矿井下自适应定位算法。针对传统的基于测距模型的定位算法易受煤矿井下环境干扰、测距误差大的问题,选择指纹匹配定位模型。针对煤矿井下环境强时变性,易增大实时采集的指纹信息与离线阶段建立的静态指纹数据库信息的匹配误差问题,将信标节点作为参考点的校准节点,以更好地反映参考点随环境变化的情况,避免增加额外的校准节点;在不增加硬件成本的同时,通过动态补偿法实时修正目标节点指纹数据,解决了指纹匹配定位模型自适应差的问题。匹配定位阶段采用PSO优化BP神经网络权值,以加速BP神经网络收敛,提高学习速度。实验结果表明,该算法更加适应随时间变化的煤矿井下环境,满足井下自适应定位要求。 展开更多
关键词 煤矿井下环境时变性 井下人员定位 自适应定位 指纹匹配 粒子群优化算法 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部