期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于含噪Retinex模型的煤矿低光照图像增强方法
被引量:
3
1
作者
李正龙
王宏伟
+2 位作者
曹文艳
张夫净
王宇衡
《工矿自动化》
CSCD
北大核心
2023年第4期70-77,共8页
低光照图像会导致许多计算机视觉任务达不到预期效果,影响后续图像分析与智能决策。针对现有煤矿井下低光照图像增强方法未考虑图像现实噪声的问题,提出一种基于含噪Retinex模型的煤矿低光照图像增强方法。建立了含噪Retienx模型,利用...
低光照图像会导致许多计算机视觉任务达不到预期效果,影响后续图像分析与智能决策。针对现有煤矿井下低光照图像增强方法未考虑图像现实噪声的问题,提出一种基于含噪Retinex模型的煤矿低光照图像增强方法。建立了含噪Retienx模型,利用噪声估计模块(NEM)估计现实噪声,将原图像和估计噪声作为光照分量估计模块(IEM)和反射分量估计模块(REM)的输入,生成光照分量与反射分量并对二者进行耦合,同时对光照分量进行伽马校正等调整,对耦合后的图像及调整后的光照分量进行除法运算,得到最终的增强图像。NEM通过3层CNN对含噪图像进行拜耳采样,然后重构生成与原图像大小一致的三通道特征图。IEM与REM均以ResNet-34作为图像特征提取网络,引入多尺度非对称卷积与注意力模块(MACAM),以增强网络的细节过滤能力及重要特征筛选能力。定性和定量评估结果表明,该方法能够平衡光源与黑暗环境之间的关系,降低现实噪声的影响,在图像自然度、真实度、对比度、结构等方面均具有良好性能,图像增强效果优于Retinex-Net,Zero-DCE,DRBN,DSLR,TBEFN,RUAS等模型。通过消融实验验证了NEM与MACAM的有效性。
展开更多
关键词
煤矿低光照图像
图像
增强
含噪Retinex模型
噪声估计
拜耳采样
多尺度非对称卷积
注意力模块
下载PDF
职称材料
面向煤矿井下低光照图像的增强方法
被引量:
5
2
作者
孔二伟
张亚邦
+1 位作者
李佳悦
王满利
《工矿自动化》
CSCD
北大核心
2023年第4期62-69,85,共9页
煤矿井下照明有限,并且具有大量粉尘、雾气,使得采集到的图像对比度低、光照不均、细节信息弱,并含有大量噪声。基于传统模型的图像增强方法鲁棒性较差,常会引起图像过度增强和色彩失真;基于深度学习的图像增强方法大多没有考虑增强引...
煤矿井下照明有限,并且具有大量粉尘、雾气,使得采集到的图像对比度低、光照不均、细节信息弱,并含有大量噪声。基于传统模型的图像增强方法鲁棒性较差,常会引起图像过度增强和色彩失真;基于深度学习的图像增强方法大多没有考虑增强引起的噪声放大。针对上述问题,提出了一种面向煤矿井下低光照图像的增强方法。采用卷积神经网络构建图像增强网络,该网络包括特征提取模块、增强模块和融合模块。特征提取模块对输入图像进行不同程度的卷积,提取多层次的图像特征,得到多个特征层;增强模块对提取到的特征层通过子网络进行增强,强化不同程度的细节特征;融合模块将增强后的特征层进行融合,输出增强图像。之后通过结构损失函数、内容损失函数和区域损失函数的约束,提高图像质量并有效抑制图像颜色失真与噪声放大,得到最终的增强图像。实验结果表明,该方法能够有效提升煤矿井下低光照图像的亮度和对比度,并且具有较强的噪声抑制能力,使图像能更好地恢复原有的细节信息,同时避免出现过曝光或颜色失真。
展开更多
关键词
煤矿低光照图像
图像
增强
图像
去噪
深度学习
损失函数
下载PDF
职称材料
题名
基于含噪Retinex模型的煤矿低光照图像增强方法
被引量:
3
1
作者
李正龙
王宏伟
曹文艳
张夫净
王宇衡
机构
太原理工大学矿业工程学院
太原理工大学山西省煤矿智能装备工程研究中心
太原理工大学机械与运载工程学院
山西焦煤集团有限责任公司博士后工作站
出处
《工矿自动化》
CSCD
北大核心
2023年第4期70-77,共8页
基金
国家重点研发计划项目(2020YFB1314004)
山西省揭榜招标项目(20201101008)
山西省重点研发计划项目(202102100401015)。
文摘
低光照图像会导致许多计算机视觉任务达不到预期效果,影响后续图像分析与智能决策。针对现有煤矿井下低光照图像增强方法未考虑图像现实噪声的问题,提出一种基于含噪Retinex模型的煤矿低光照图像增强方法。建立了含噪Retienx模型,利用噪声估计模块(NEM)估计现实噪声,将原图像和估计噪声作为光照分量估计模块(IEM)和反射分量估计模块(REM)的输入,生成光照分量与反射分量并对二者进行耦合,同时对光照分量进行伽马校正等调整,对耦合后的图像及调整后的光照分量进行除法运算,得到最终的增强图像。NEM通过3层CNN对含噪图像进行拜耳采样,然后重构生成与原图像大小一致的三通道特征图。IEM与REM均以ResNet-34作为图像特征提取网络,引入多尺度非对称卷积与注意力模块(MACAM),以增强网络的细节过滤能力及重要特征筛选能力。定性和定量评估结果表明,该方法能够平衡光源与黑暗环境之间的关系,降低现实噪声的影响,在图像自然度、真实度、对比度、结构等方面均具有良好性能,图像增强效果优于Retinex-Net,Zero-DCE,DRBN,DSLR,TBEFN,RUAS等模型。通过消融实验验证了NEM与MACAM的有效性。
关键词
煤矿低光照图像
图像
增强
含噪Retinex模型
噪声估计
拜耳采样
多尺度非对称卷积
注意力模块
Keywords
low light image of coal mine
image enhancement
Retinex model containing noise
noise estimation
Bayer sampling
multi-scale asymmetric convolution
attention module
分类号
TD67 [矿业工程—矿山机电]
下载PDF
职称材料
题名
面向煤矿井下低光照图像的增强方法
被引量:
5
2
作者
孔二伟
张亚邦
李佳悦
王满利
机构
平顶山天安煤业股份有限公司
河南理工大学物理与电子信息学院
出处
《工矿自动化》
CSCD
北大核心
2023年第4期62-69,85,共9页
基金
国家自然科学基金项目(52074305)
河南理工大学博士基金项目(B2021-64)。
文摘
煤矿井下照明有限,并且具有大量粉尘、雾气,使得采集到的图像对比度低、光照不均、细节信息弱,并含有大量噪声。基于传统模型的图像增强方法鲁棒性较差,常会引起图像过度增强和色彩失真;基于深度学习的图像增强方法大多没有考虑增强引起的噪声放大。针对上述问题,提出了一种面向煤矿井下低光照图像的增强方法。采用卷积神经网络构建图像增强网络,该网络包括特征提取模块、增强模块和融合模块。特征提取模块对输入图像进行不同程度的卷积,提取多层次的图像特征,得到多个特征层;增强模块对提取到的特征层通过子网络进行增强,强化不同程度的细节特征;融合模块将增强后的特征层进行融合,输出增强图像。之后通过结构损失函数、内容损失函数和区域损失函数的约束,提高图像质量并有效抑制图像颜色失真与噪声放大,得到最终的增强图像。实验结果表明,该方法能够有效提升煤矿井下低光照图像的亮度和对比度,并且具有较强的噪声抑制能力,使图像能更好地恢复原有的细节信息,同时避免出现过曝光或颜色失真。
关键词
煤矿低光照图像
图像
增强
图像
去噪
深度学习
损失函数
Keywords
low light images of coal mines
image enhancement
image denoising
deep learning
loss function
分类号
TD67 [矿业工程—矿山机电]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于含噪Retinex模型的煤矿低光照图像增强方法
李正龙
王宏伟
曹文艳
张夫净
王宇衡
《工矿自动化》
CSCD
北大核心
2023
3
下载PDF
职称材料
2
面向煤矿井下低光照图像的增强方法
孔二伟
张亚邦
李佳悦
王满利
《工矿自动化》
CSCD
北大核心
2023
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部