This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion l...This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion liability index were determined by testing 14 coals and 14 coal-shales from Witbank coalfields, South Africa. The relationship between these intrinsic properties (obtained from proximate, ultimate and petrographic analysis) and spontaneous combustion liability indices (the Wits-Ehac Index and Wits-CT Index) were established. The influence of the intrinsic properties of coal-shales in relation to coal properties affecting spontaneous combustion has been established using a statistical method. The linear regression analysis indicates better linear relationships between some of the selected intrinsic properties and spontaneous combustion liability index and thus, identifies the major intrinsic factors affecting their liability toward spontaneous combustion. It was found that a definite positive or negative correlation coefficient exists between the intrinsic factors and spontaneous combustion liability. A set of models to predict the spontaneous combustion liability was derived. The best significant correlation along with the most appropriate model as indicated by R-squared values, the coefficient of corre- lations and standard error was used to predict the incident of spontaneous combustion.展开更多
The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and opti...The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile.展开更多
Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly infuences the gasification effici...Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly infuences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 ℃. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.展开更多
By the microseismic (MS) monitoring system of Sanhejian Coal Mine,the detail MS activity rules in the entire mining process of 9202 strong rockburst working face were studied,following main conclusions were obtained.(...By the microseismic (MS) monitoring system of Sanhejian Coal Mine,the detail MS activity rules in the entire mining process of 9202 strong rockburst working face were studied,following main conclusions were obtained.(1) The strong correlation between MS activity and the region stress gradient was revealed.The higher the region stress gradient, the stronger the MS signal is,and the frequency-spectrum moves to lower frequency band the amplitude begins to add gradually.(2) The different types of MS signals have the cor- responding frequency-spectrum character.Such as relieve-shot MS signal shows the wide frequency-spectrum,multi-peak high frequency character,while rockburst omen signal shows the low frequency and amplitude,the mainshock signal has relatively higher fre- quency and amplitude.(3) To monitor and recognize rockburst dangerous region,the strong consistence between the MS signal intensity and the amplitude of electromagnetic emission (EME) signal and drilling bits measured was observed.On above,the weakening and controlling technology of MS intensity was put forward.展开更多
To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of min...To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modem mining and the principles of pressure relief are described. Coal-gas simultaneous ex- traction and multi-pressure relief techniques were developed which require a combination of surface and underground gas extraction. The application of Y-ventilation systems, of roadways retained along goafs, of stress control techniques for highly fragile mine roofs and of powerful, automatic and reliable mining equipment contributes to safe operation of modem deep mines. Operating parameters for these techniques are described and the results of their use discussed.展开更多
In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollut...In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.展开更多
Since mining rights of coal resources(for short MRCR) could be regarded as a multi-stage compound real option,the evaluation for MRCR can be better solved using op- tion theory than the NPV.In the former research,we d...Since mining rights of coal resources(for short MRCR) could be regarded as a multi-stage compound real option,the evaluation for MRCR can be better solved using op- tion theory than the NPV.In the former research,we developed a two-factor model of evaluating MRCR when the coal spot price and convenience yield are stochastic based on option theory.On the basis of this two-factor model,we set up a three-factor model of evaluating MRCR when the interest rate followed a stochastic process.Through a real example application,we found the model can get higher values than the two-factor model and the NPV.This is because considering the volatility of interest rate can improve the executive opportunity of MRCR.展开更多
Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks,...Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.展开更多
Analyzed of the present situation of Chinese coal mines safety in production and the reasons for coal mining accident,and realized the coal mines safety in production, which should increase the legal safeguards of coa...Analyzed of the present situation of Chinese coal mines safety in production and the reasons for coal mining accident,and realized the coal mines safety in production, which should increase the legal safeguards of coal mine safety in production,and safety input,established the comprehensive coal mine safety evaluation system,comprehen- sively enhance quality of coal mine workers,established and improved early warning me- chanism of safety production of coal mine.展开更多
Analyzed the main problems which were found in current conditions and prob- lems of informationization in coal enterprises.It clarified how to achieve informationization in coal mine and put forward a general configur...Analyzed the main problems which were found in current conditions and prob- lems of informationization in coal enterprises.It clarified how to achieve informationization in coal mine and put forward a general configuration of informationization construction in which informationization in coal enterprises was divided into two parts: informationization of safety production and informationization of management.Planned a platform of inte- grated management of informationization in coal enterprises.Ultimately,it has brought forward that an overall integrated digital mine is the way to achieve the goal of informa- tionization in coal enterprises,which can promote the application of automation,digitaliza- tion,networking,informaitionization to intellectualization.At the same time,the competi- tiveness of enterprises can be improved entirely,and new type of coal industry can be supported by information technology.展开更多
The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynam...The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources.展开更多
Extracting, transportation and the using from fossil fuels can damage to the hydrosphere, the biosphere and the Earth's atmosphere. But humans always need to this valuable substance. The production of oil derivatives...Extracting, transportation and the using from fossil fuels can damage to the hydrosphere, the biosphere and the Earth's atmosphere. But humans always need to this valuable substance. The production of oil derivatives by means of forest waste and coal through the Fischer-Tropsch process is an appropriate solution for the cleanliness of all parts of the environment. For the production of favorite products by the synthesis of Fischer-Tropsch, the performance of the catalyst under different operating conditions should be predictable. For this reason, in this paper, eight mathematical models were determined for the selectivity of five products of methane, light hydrocarbons, gasoline, diesel and wax based on three factors of reduction temperature, time on stream, and He/CO ratio inlet gas on iron-based catalyst. The results showed that the reduction temperature factor had the most effective on the selectivity of hydrocarbon products, exception diesel, so that the increase of the reduction temperature led to increase of the selectivity of methane, light hydrocarbons, gasoline and reduce of the degree of selectivity of the wax and vice versa. For the diesel selectivity, factor of the He/CO ratio inlet gas was the most effective than other factors.展开更多
Spontaneous combustion of coal is a major cause of coal mine fires.It not only poses a severe hazard to the safe extraction of coal resources,but also jeopardizes the safety of mine workers.The development of a scient...Spontaneous combustion of coal is a major cause of coal mine fires.It not only poses a severe hazard to the safe extraction of coal resources,but also jeopardizes the safety of mine workers.The development of a scientific management system of coal spontaneous combustion is of vital importance to the safe production of coal mine.This paper provides a comparative analysis of a range of worldwide prediction techniques and methods for coal spontaneous combustion,and systematically introduces the trigger action response plans(TARPs)system used in Australian coal mines for managing the spontaneous heating of coal.An artificial neural network model has been established on the basis of real coal mine operational conditions.Through studying and training the neural network model,prediction errors can be controlled within the allowable range.The trained model is then applied to the conditions of Nos.1 and 3 coal seams located in Weijiadi Coal Mine to demonstrate its feasibility for spontaneous combustion assessment.Based upon the TARPs system which is commonly used in Australian longwall mines,a TARPs system has been developed for Weijiadi Coal Mine to assist the management of spontaneous combustion hazard and ensure the safe operation of its mining activities.展开更多
Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and ...Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and discusses mechanisms that can be used to avoid their occurrences. Coal burst are not common in most underground mines. Their occurrence almost always has such dramatic consequences to a mining operation that changes in practice are required. Fundamental factors influencing coal burst events include strong strata,abnormal strata caving,elevated stresses,critical size pillars and the lack of sufficiently sized barrier pillars during extraction. These factors interact to produce excessive stress,seismic shock and loss of confinement mechanisms. Over the 90 years of dealing with these hazards,many novel prevention controls have been developed including novel mine designs and extraction sequences,most of which are site specific in their application. Without an accurate assessment of the fundamental factors that influence coal burst and knowledge of their mechanisms of occurrence,control techniques may be misapplied and risk inadequately mitigated.展开更多
文摘This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion liability index were determined by testing 14 coals and 14 coal-shales from Witbank coalfields, South Africa. The relationship between these intrinsic properties (obtained from proximate, ultimate and petrographic analysis) and spontaneous combustion liability indices (the Wits-Ehac Index and Wits-CT Index) were established. The influence of the intrinsic properties of coal-shales in relation to coal properties affecting spontaneous combustion has been established using a statistical method. The linear regression analysis indicates better linear relationships between some of the selected intrinsic properties and spontaneous combustion liability index and thus, identifies the major intrinsic factors affecting their liability toward spontaneous combustion. It was found that a definite positive or negative correlation coefficient exists between the intrinsic factors and spontaneous combustion liability. A set of models to predict the spontaneous combustion liability was derived. The best significant correlation along with the most appropriate model as indicated by R-squared values, the coefficient of corre- lations and standard error was used to predict the incident of spontaneous combustion.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of Chinese(02019)Anhui Province Science and Technology Tackling Key Project(08010202058)
文摘The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile.
基金Acknowledgements This work was financially supported by the National Key R&D Program of China (No. 2017YFB0602302) and the National Natural Science Foundation of China (No. 21306193).
文摘Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly infuences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 ℃. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.
基金the National Key Project of Scientific and Technical Supporting Programs(2006BAK04B02,2006BAK03B06)
文摘By the microseismic (MS) monitoring system of Sanhejian Coal Mine,the detail MS activity rules in the entire mining process of 9202 strong rockburst working face were studied,following main conclusions were obtained.(1) The strong correlation between MS activity and the region stress gradient was revealed.The higher the region stress gradient, the stronger the MS signal is,and the frequency-spectrum moves to lower frequency band the amplitude begins to add gradually.(2) The different types of MS signals have the cor- responding frequency-spectrum character.Such as relieve-shot MS signal shows the wide frequency-spectrum,multi-peak high frequency character,while rockburst omen signal shows the low frequency and amplitude,the mainshock signal has relatively higher fre- quency and amplitude.(3) To monitor and recognize rockburst dangerous region,the strong consistence between the MS signal intensity and the amplitude of electromagnetic emission (EME) signal and drilling bits measured was observed.On above,the weakening and controlling technology of MS intensity was put forward.
基金Projects 2001BA803B04 and 2004BA803B01 supported by the National Key Projects for Tackling Scientific and Technological Problems during the 10thFive-Year Plan
文摘To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modem mining and the principles of pressure relief are described. Coal-gas simultaneous ex- traction and multi-pressure relief techniques were developed which require a combination of surface and underground gas extraction. The application of Y-ventilation systems, of roadways retained along goafs, of stress control techniques for highly fragile mine roofs and of powerful, automatic and reliable mining equipment contributes to safe operation of modem deep mines. Operating parameters for these techniques are described and the results of their use discussed.
基金Projects 20207014 and 50674084 supported by the National Natural Science Foundation of China
文摘In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.
文摘Since mining rights of coal resources(for short MRCR) could be regarded as a multi-stage compound real option,the evaluation for MRCR can be better solved using op- tion theory than the NPV.In the former research,we developed a two-factor model of evaluating MRCR when the coal spot price and convenience yield are stochastic based on option theory.On the basis of this two-factor model,we set up a three-factor model of evaluating MRCR when the interest rate followed a stochastic process.Through a real example application,we found the model can get higher values than the two-factor model and the NPV.This is because considering the volatility of interest rate can improve the executive opportunity of MRCR.
基金provided by the independent research subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No. CXZZ13_0947)
文摘Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.
基金the Educational Department Project of Liaoning Province(No.20060382)
文摘Analyzed of the present situation of Chinese coal mines safety in production and the reasons for coal mining accident,and realized the coal mines safety in production, which should increase the legal safeguards of coal mine safety in production,and safety input,established the comprehensive coal mine safety evaluation system,comprehen- sively enhance quality of coal mine workers,established and improved early warning me- chanism of safety production of coal mine.
基金the Hi-Tech and Research Development Program of China(2005AA133070)the Electronics Information Industry Development Fund Tender Project(XDJ2-0514-27)
文摘Analyzed the main problems which were found in current conditions and prob- lems of informationization in coal enterprises.It clarified how to achieve informationization in coal mine and put forward a general configuration of informationization construction in which informationization in coal enterprises was divided into two parts: informationization of safety production and informationization of management.Planned a platform of inte- grated management of informationization in coal enterprises.Ultimately,it has brought forward that an overall integrated digital mine is the way to achieve the goal of informa- tionization in coal enterprises,which can promote the application of automation,digitaliza- tion,networking,informaitionization to intellectualization.At the same time,the competi- tiveness of enterprises can be improved entirely,and new type of coal industry can be supported by information technology.
基金the National Natural Science Foundation of China(40572165)
文摘The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources.
文摘Extracting, transportation and the using from fossil fuels can damage to the hydrosphere, the biosphere and the Earth's atmosphere. But humans always need to this valuable substance. The production of oil derivatives by means of forest waste and coal through the Fischer-Tropsch process is an appropriate solution for the cleanliness of all parts of the environment. For the production of favorite products by the synthesis of Fischer-Tropsch, the performance of the catalyst under different operating conditions should be predictable. For this reason, in this paper, eight mathematical models were determined for the selectivity of five products of methane, light hydrocarbons, gasoline, diesel and wax based on three factors of reduction temperature, time on stream, and He/CO ratio inlet gas on iron-based catalyst. The results showed that the reduction temperature factor had the most effective on the selectivity of hydrocarbon products, exception diesel, so that the increase of the reduction temperature led to increase of the selectivity of methane, light hydrocarbons, gasoline and reduce of the degree of selectivity of the wax and vice versa. For the diesel selectivity, factor of the He/CO ratio inlet gas was the most effective than other factors.
基金provided for this work by the China Scholarship CouncilNational Natural Science Funds of China(No.51304212)
文摘Spontaneous combustion of coal is a major cause of coal mine fires.It not only poses a severe hazard to the safe extraction of coal resources,but also jeopardizes the safety of mine workers.The development of a scientific management system of coal spontaneous combustion is of vital importance to the safe production of coal mine.This paper provides a comparative analysis of a range of worldwide prediction techniques and methods for coal spontaneous combustion,and systematically introduces the trigger action response plans(TARPs)system used in Australian coal mines for managing the spontaneous heating of coal.An artificial neural network model has been established on the basis of real coal mine operational conditions.Through studying and training the neural network model,prediction errors can be controlled within the allowable range.The trained model is then applied to the conditions of Nos.1 and 3 coal seams located in Weijiadi Coal Mine to demonstrate its feasibility for spontaneous combustion assessment.Based upon the TARPs system which is commonly used in Australian longwall mines,a TARPs system has been developed for Weijiadi Coal Mine to assist the management of spontaneous combustion hazard and ensure the safe operation of its mining activities.
文摘Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and discusses mechanisms that can be used to avoid their occurrences. Coal burst are not common in most underground mines. Their occurrence almost always has such dramatic consequences to a mining operation that changes in practice are required. Fundamental factors influencing coal burst events include strong strata,abnormal strata caving,elevated stresses,critical size pillars and the lack of sufficiently sized barrier pillars during extraction. These factors interact to produce excessive stress,seismic shock and loss of confinement mechanisms. Over the 90 years of dealing with these hazards,many novel prevention controls have been developed including novel mine designs and extraction sequences,most of which are site specific in their application. Without an accurate assessment of the fundamental factors that influence coal burst and knowledge of their mechanisms of occurrence,control techniques may be misapplied and risk inadequately mitigated.