期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
煤矿瓦斯涌出量精准预测及其控制因素分析——以王庄煤矿为例
1
作者 郭婵妤 方惠明 梁叶萍 《中国煤炭地质》 2024年第11期28-34,共7页
随着煤矿开采深度的增加,煤层瓦斯含量不断增高,煤矿安全开采形势日趋严峻。为实现煤炭安全高效生产,精准预测瓦斯涌出量十分重要。采用数据统计、理论分析等手段,从研究区瓦斯地质条件出发,综合分析控制瓦斯涌出量的各种地质因素,通过... 随着煤矿开采深度的增加,煤层瓦斯含量不断增高,煤矿安全开采形势日趋严峻。为实现煤炭安全高效生产,精准预测瓦斯涌出量十分重要。采用数据统计、理论分析等手段,从研究区瓦斯地质条件出发,综合分析控制瓦斯涌出量的各种地质因素,通过数据标准化、显著性分析和交叉验证,剔除相关性较小的因素,建立瓦斯涌出量预测模型,对未采区瓦斯涌出量进行了预测。结果表明:控制研究区煤层瓦斯涌出量的主要因素为煤层埋藏深度、冲积层厚度等。根据预测模型计算出研究区未采区内瓦斯涌出量,最小为33.94m3/min,最大达到59.18m3/min。研究成果对采用适用性技术进行瓦斯精准抽采、降低瓦斯灾害具有重要意义。 展开更多
关键词 煤矿瓦斯涌出量 精准预测 控制因素 化理论
下载PDF
基于RBF神经网络的煤矿瓦斯涌出量预测 被引量:3
2
作者 田珍 刘学会 《煤炭技术》 CAS 北大核心 2012年第7期97-98,101,共3页
煤矿瓦斯涌出量预测是矿井安全中的一个关键和热点问题。煤矿瓦斯涌出量涉及很多因素,例如日产量、日进度、煤层厚度、煤层间距、煤层深度等,瓦斯涌出量预测是一个非线性问题。径向基神经网络是目前应用非常广泛的一种局部神经网络模型... 煤矿瓦斯涌出量预测是矿井安全中的一个关键和热点问题。煤矿瓦斯涌出量涉及很多因素,例如日产量、日进度、煤层厚度、煤层间距、煤层深度等,瓦斯涌出量预测是一个非线性问题。径向基神经网络是目前应用非常广泛的一种局部神经网络模型,在函数回归、序列预测中具有很好的应用效果。文中提出了将径向基神经网络用于预测煤矿瓦斯涌出量的想法,并分析了可行性。 展开更多
关键词 煤矿瓦斯涌出量 非线性 径向基神经网络
下载PDF
合理遗忘选择训练样本的煤矿瓦斯涌出量预测
3
作者 高明明 邵良杉 《计算机工程与应用》 CSCD 2014年第14期1-4,25,共5页
为了提高煤矿瓦斯涌出量的预测精度,针对煤矿瓦斯涌出量的训练样本选择问题,提出一种基于合理遗忘训练样本的煤矿瓦斯涌出量预测模型。首先通过引入遗忘因子既考虑了历史数据的影响,又突出了新数据的作用,然后最小二乘支持向量机建立煤... 为了提高煤矿瓦斯涌出量的预测精度,针对煤矿瓦斯涌出量的训练样本选择问题,提出一种基于合理遗忘训练样本的煤矿瓦斯涌出量预测模型。首先通过引入遗忘因子既考虑了历史数据的影响,又突出了新数据的作用,然后最小二乘支持向量机建立煤矿瓦斯涌出量预测模型,最后进行了仿真分析。结果表明,该模型提高了煤矿瓦斯涌出量的建模效率,获得了更加理想的煤矿瓦斯涌出量预测结果。 展开更多
关键词 煤矿瓦斯涌出量 最小二乘支持向 仿真实验 预测精度
下载PDF
基于LVQ-GA-BP神经网络的煤矿瓦斯涌出量预测 被引量:6
4
作者 谢丽蓉 王晋瑞 +2 位作者 穆塔里夫.阿赫迈德 路朋 牛永朝 《煤矿安全》 北大核心 2017年第12期150-152,156,共4页
针对煤矿瓦斯涌出量影响因素多、非线性、复杂性等特点,提出了学习向量量化神经网络(LVQ)与GA-BP神经网络相结合的方法。通过LVQ对诸多影响因素进行分类并选出主要影响因素,再用遗传算法(GA)优化BP神经网络的权值和阈值,构建煤矿瓦斯涌... 针对煤矿瓦斯涌出量影响因素多、非线性、复杂性等特点,提出了学习向量量化神经网络(LVQ)与GA-BP神经网络相结合的方法。通过LVQ对诸多影响因素进行分类并选出主要影响因素,再用遗传算法(GA)优化BP神经网络的权值和阈值,构建煤矿瓦斯涌出量预测模型,并通过相关数据将建立的LVQ-GA-BP预测模型与BP神经网络进行了对比分析,结果表明通过这种方法平均相对误差为0.025 51,低于BP神经网络训练的平均绝对误差,网络收敛速度也显著提高了。 展开更多
关键词 LVQ神经网络 遗传算法 BP神经网络 煤矿瓦斯涌出量 预测
原文传递
Pattern Recognition and Forecast of Coal and Gas Outburst 被引量:4
5
作者 LI Sheng ZHANG Hong-wei 《Journal of China University of Mining and Technology》 EI 2005年第3期251-254,共4页
Coal and gas outburst is a complicated dynamic phenomenon in coal mines, Multi-factor Pattern Recognition is based on the relevant data obtained from research achievements of Geo-dynamic Division, With the help of spa... Coal and gas outburst is a complicated dynamic phenomenon in coal mines, Multi-factor Pattern Recognition is based on the relevant data obtained from research achievements of Geo-dynamic Division, With the help of spatial data management, the Neuron Network and Cluster algorithm are applied to predict the danger probability of coal and gas outburst in each cell of coal mining district. So a coal-mining district can be divided into three areas: dangerous area, minatory area, and safe area. This achievement has been successfully applied for regional prediction of coal and gas outburst in Hualnan mining area in China. 展开更多
关键词 coal and gas outburst probability prediction pattern recognition geo-dynamic division
下载PDF
Determination of indices and critical values of gas parameters of the first gas outburst in a coal seam of the Xieqiao Mine 被引量:4
6
作者 Ou Jianchun Liu Mingju +2 位作者 Zhang Chunru Liu Yanwei Wei Jianping 《International Journal of Mining Science and Technology》 2012年第1期89-93,共5页
Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical v... Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical values of gas parameters of the first gas outburst in a coal seam of the Xieqiao Mine. According to a characteristic analysis and a summary of the rules of coal and gas outbursts in the No.8 coal seam of a Hua- inan mine, we have investigated their effect on coal and gas outbursts in terms such as ground stress, gas, and coal structure. We have selected gas parameters and determined the critical values of each of the fol- lowing indices: gas content as 7.7 m^3/t, tectonic coal as 0.8 m thick, the absolute gas emission as 2 m3/min, the rate of change as 0.7 m3/min, the gas desorption index of a drilling chip KI as 0.26 mL/(g min^1/2) and the values of desorption indexes Ah2 as 200 Pa. From a verification of the production, the results indicate that application of each index and their critical values significantly improve the level of safety in the pro- duction process, relieve the burden upon the mine, save much labor and bring clear economic benefits. 展开更多
关键词 Parameters of first gas outburst Gas content Thickness of tectonic coal Critical value Coal and gas outbursts
下载PDF
CONTROL OF GAS EMISSION AT COAL FACE IN CHINA 被引量:2
7
作者 俞启香 郭俊峰 付建华 《Journal of China University of Mining and Technology》 1991年第1期53-63,共11页
All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal fac... All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal face of mine No. 2 at Yongquan with a daily output of 2. 000t/d is up to 66-72m2/min. Special gas emission phenomena such as gas blowout, gas and coal outburst etc. have occurred at some faces, which threatens the safe production of face. obstructs the growth of productivity and limits the full play of mechanized equipment.In this paper, gas at face is divided, according to its origin, into three constituents, namely , coming from the coal wall, mined coal and goaf;and a formula for calculation is given. Also , the characteristics of the variation of gas emission at coal face, and the influence of mining sequence of a group of seams and supplied air quantity on the gas emission are discussed. Furthermore . based on the regularity of gas emission at coal face from the above three sources, and on the experiences of years, three principles on controlling gas emission at coal face are presented, that are managing the gas on classification basis, harnessing each source separately and comprehensive prevention and control. Finally, technical measures for prevention and treatment of the accumulation of gas in the upper corner of face, at the working place of coal-winning machine and in the bottom trough of conveyor are introduced. 展开更多
关键词 mine safety coal face gas emission PREVENTION CONTROL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部