期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
煤矿计量器具周期检定规定及管理 被引量:1
1
作者 赵强 《现代工业经济和信息化》 2021年第4期134-135,共2页
在煤矿计量器具周期检定规定及管理标准中要求建立专门的工作台账,合理利用Excel电子表格实施台账管理。文章简单结合Excel电子表格讨论煤矿计量器具周期检定相关技术规定内容,并对其管理注意事项进行描述。
关键词 煤矿计量器具 EXCEL电子表格 周期检定规定 管理注意事项
下载PDF
气体分析对于煤矿计量的意义
2
作者 钱洁 《科技风》 2014年第12期187-187,共1页
煤矿计量,是保障煤矿安全生产的重要基础性工作之一,其秉持以人为本的科学发展观,监督并防范煤矿事故的发生。而煤矿内气体的分析对于煤矿的安全生产工作起到预测、定性等不可忽视的作用。是故,为加强煤矿安全计量工作,促进煤矿安全生产... 煤矿计量,是保障煤矿安全生产的重要基础性工作之一,其秉持以人为本的科学发展观,监督并防范煤矿事故的发生。而煤矿内气体的分析对于煤矿的安全生产工作起到预测、定性等不可忽视的作用。是故,为加强煤矿安全计量工作,促进煤矿安全生产,矿内气体分析工作彰显出其重要意义。本文以安全生产为线,就矿内气体成分分析和煤矿计量展开论述,以期让读者更多的了解到与煤矿相关的工作。 展开更多
关键词 煤矿计量 气体分析 安全生产
下载PDF
气体分析对于煤矿计量的意义
3
作者 钱洁 《科技风》 2014年第10期275-275,共1页
煤矿计量,是保障煤矿安全生产的重要基础性工作之一,其秉持以人为本的科学发展观,监督并防范煤矿事故的发生。而煤矿内气体的分析对于煤矿的安全生产工作起到预测、定性等不可忽视的作用。是故,为加强煤矿安全计量工作,促进煤矿安全生产... 煤矿计量,是保障煤矿安全生产的重要基础性工作之一,其秉持以人为本的科学发展观,监督并防范煤矿事故的发生。而煤矿内气体的分析对于煤矿的安全生产工作起到预测、定性等不可忽视的作用。是故,为加强煤矿安全计量工作,促进煤矿安全生产,矿内气体分析工作彰显出其重要意义。本文以安全生产为线,就矿内气体成分分析和煤矿计量展开论述,以期让读者更多的了解到与煤矿相关的工作。 展开更多
关键词 煤矿计量 气体分析 安全生产
下载PDF
煤矿安全计量器具管理研究 被引量:4
4
作者 袁淑芳 张红玲 《现代测量与实验室管理》 2011年第4期62-64,共3页
通过分析目前煤矿安全计量器具管理存在的问题和煤矿计量器具管理的特点,提出了一套煤矿安全计量器具管理系统,可以实现对煤矿计量器具进行严格合理的动态管理和控制,供相关管理人员参考。
关键词 煤矿计量器具 管理模式
下载PDF
ZJH36/127S隔爆兼本质安全型核子秤的设计
5
作者 向新程 周立业 《核电子学与探测技术》 CAS CSCD 北大核心 2000年第2期108-111,共4页
简单介绍了 ZJH36 / 12 7S型防爆核子秤的设计依据、设计原则和设计过程 。
关键词 核子秤 隔爆型 本质安全型 设计 煤矿计量
下载PDF
Estimating coal reserves using a support vector machine 被引量:3
6
作者 LIU Wen-kai WANG Rui-fang ZHENG Xiao-juan 《Journal of China University of Mining and Technology》 EI 2008年第1期103-106,共4页
The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support v... The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable. 展开更多
关键词 support vector machine statistical learning theory coal reserve
下载PDF
Quantitative inverse modeling of nitrogen content from hyperion data under stress of exhausted coal mining sites 被引量:4
7
作者 LU Xia HU Zhen-qi GUO Li 《Mining Science and Technology》 EI CAS 2009年第1期31-35,共5页
Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun ... Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun coal mine, located in the Mentougou district of Beijing, was chosen as a case study. The ecological damage was analyzed by 3S technology, field investigation and from chemical data. The derivative spectra of the diagnostic absorption bands are derived from the spectra measured in the field and used as characteristic spectral variables. A correlation analysis was conducted for the nitrogen content of the vegetation samples and the fast derivative spectrum and the estimation model of nitrogen content established by a multiple stepwise linear regression method. The spatial distribution of nitrogen content was extracted by a parameter mapping method from the Hyperion data which revealed the distribution of the nitrogen content. In addition, the estimation model was evaluated for two evaluation indicators which are important for the precision of the model. Experimental results indicate that by linear regression and parameter mapping, the estimation model precision was Very high. The coefficient of determination, R2, was 0.795 and the standard deviation of residual (SDR) 0.19. The nitrogen content of most samples was about 1.03% and the nitrogen content in the study site seems inversely proportional to the distance from the piles of coal waste. Therefore, we can conclude that inversely modeling nitrogen content by hyper-spectral remote sensing in exhausted coal mining sites is feasible and our study can be taken as reference in species selection and in subseauent management and maintenance in ecological restoration. 展开更多
关键词 HYPERION nitrogen content estimation model linear regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部