Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture wh...Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.展开更多
In this study we measured the △P(initial speed of gas emission) index with different gas concentrations of carbon dioxide(pure CO2,90% CO2+10% CH4,67% CO2+33% CH4,50% CO2+50% CH4,30% CO2+10% CH4 and pure CH4) of coal...In this study we measured the △P(initial speed of gas emission) index with different gas concentrations of carbon dioxide(pure CO2,90% CO2+10% CH4,67% CO2+33% CH4,50% CO2+50% CH4,30% CO2+10% CH4 and pure CH4) of coal samples from the No.2 coal seam in the Yaojie Coal Mine,Gansu province,China.The effect of carbon dioxide concentration,gas composition,coal strength and particle size of coal samples on the △P index was investigated.The experimental results show that with gas of various compositions,the △P value of three samples were clearly different.The △P index of coal samples A,B and C(0.2~0.25 mm) were 4,6 and 7 with pure CH4 and 22,30 and 21 when pure CH4 was used.Carbon dioxide concentration affects the △P index markedly.The △P index increases with an increase in carbon dioxide concentration,especially for coal B.Hence,the △P index and K(another outburst index) values tested only with pure CH4 for prediction of the danger of outburst is not accurate.It is important to determine the initial speed of gas emission given the gas composition of the coal seam to be tested for exact outburst prediction.展开更多
Maceral composition and aromatic compounds were determined on columnsamples to study the peat-forming environments of Permian coal seam 2 and Carboniferouscoal seam 9^(-2) from the Xingtai coalfield,China.The macerals...Maceral composition and aromatic compounds were determined on columnsamples to study the peat-forming environments of Permian coal seam 2 and Carboniferouscoal seam 9^(-2) from the Xingtai coalfield,China.The macerals were dominated by inertinitein seam 2 and by vitrinite in seam 9^(-2).Three maceral groups were selected as indicatorsof peat-forming environments.Two triangle diagrams were drawn based on the indicatorsto explicate the peat-forming environments of permian seam 2 and Carboniferousseam 9^(-2).The results indicate that the peat of carboniferous seam 9^(-2) formed dominantlyin wet swamps,whereas the peat of Permian seam 2 formed dominantly in dry swampsand open moor environments.展开更多
As a contributing factor in the dynamic failure(bumping) of coal pillars,a bump-prone coal seam has been described as one that is ‘‘uncleated or poorly cleated,strong...that sustains high stresses."Despite exte...As a contributing factor in the dynamic failure(bumping) of coal pillars,a bump-prone coal seam has been described as one that is ‘‘uncleated or poorly cleated,strong...that sustains high stresses."Despite extensive research regarding engineering controls to help reduce the risk for coal bumps,there is a paucity of research related to the properties of coal itself and how those properties might contribute to the mechanics of failures. Geographic distribution of reportable dynamic failure events reveals a highly localized clustering of incidents despite widespread mining activities. This suggests that unique,contributing geologic characteristics exist within these regions that are less prevalent elsewhere. To investigate a new approach for identifying coal characteristics that might lead to bumping,a principal component analysis(PCA) was performed on 306 coal records from the Pennsylvania State Coal Sample database to determine which characteristics were most closely linked with a positive history of reportable bumping. Selected material properties from the data records for coal samples were chosen as variables for the PCA and included petrographic,elemental,and molecular properties. Results of the PCA suggest a clear correlation between low organic sulfur content and the occurrence of dynamic failure,and a secondary correlation between volatile matter and dynamic failure phenomena. The ratio of volatile matter to sulfur in the samples shows strong correlation with bump-prone regions,with a minimum threshold value of approximately 20,while correlations determined for other petrographic and elemental variables were more ambiguous. Results suggest that the composition of the coal itself is directly linked to how likely a coal is to have experienced a reportable dynamic failure event. These compositional controls are distinct from other previously established engineering and geologic criteria and represent a missing piece to the bump prediction puzzle.展开更多
文摘Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.
基金supported by the Key Project of the Natural Science Foundation of China (Nos.70533050 and 50774084)
文摘In this study we measured the △P(initial speed of gas emission) index with different gas concentrations of carbon dioxide(pure CO2,90% CO2+10% CH4,67% CO2+33% CH4,50% CO2+50% CH4,30% CO2+10% CH4 and pure CH4) of coal samples from the No.2 coal seam in the Yaojie Coal Mine,Gansu province,China.The effect of carbon dioxide concentration,gas composition,coal strength and particle size of coal samples on the △P index was investigated.The experimental results show that with gas of various compositions,the △P value of three samples were clearly different.The △P index of coal samples A,B and C(0.2~0.25 mm) were 4,6 and 7 with pure CH4 and 22,30 and 21 when pure CH4 was used.Carbon dioxide concentration affects the △P index markedly.The △P index increases with an increase in carbon dioxide concentration,especially for coal B.Hence,the △P index and K(another outburst index) values tested only with pure CH4 for prediction of the danger of outburst is not accurate.It is important to determine the initial speed of gas emission given the gas composition of the coal seam to be tested for exact outburst prediction.
基金Supported by the National Natural Science Foundation of China(40773040)the National Basic Research Program of China (2003CB214607)
文摘Maceral composition and aromatic compounds were determined on columnsamples to study the peat-forming environments of Permian coal seam 2 and Carboniferouscoal seam 9^(-2) from the Xingtai coalfield,China.The macerals were dominated by inertinitein seam 2 and by vitrinite in seam 9^(-2).Three maceral groups were selected as indicatorsof peat-forming environments.Two triangle diagrams were drawn based on the indicatorsto explicate the peat-forming environments of permian seam 2 and Carboniferousseam 9^(-2).The results indicate that the peat of carboniferous seam 9^(-2) formed dominantlyin wet swamps,whereas the peat of Permian seam 2 formed dominantly in dry swampsand open moor environments.
文摘As a contributing factor in the dynamic failure(bumping) of coal pillars,a bump-prone coal seam has been described as one that is ‘‘uncleated or poorly cleated,strong...that sustains high stresses."Despite extensive research regarding engineering controls to help reduce the risk for coal bumps,there is a paucity of research related to the properties of coal itself and how those properties might contribute to the mechanics of failures. Geographic distribution of reportable dynamic failure events reveals a highly localized clustering of incidents despite widespread mining activities. This suggests that unique,contributing geologic characteristics exist within these regions that are less prevalent elsewhere. To investigate a new approach for identifying coal characteristics that might lead to bumping,a principal component analysis(PCA) was performed on 306 coal records from the Pennsylvania State Coal Sample database to determine which characteristics were most closely linked with a positive history of reportable bumping. Selected material properties from the data records for coal samples were chosen as variables for the PCA and included petrographic,elemental,and molecular properties. Results of the PCA suggest a clear correlation between low organic sulfur content and the occurrence of dynamic failure,and a secondary correlation between volatile matter and dynamic failure phenomena. The ratio of volatile matter to sulfur in the samples shows strong correlation with bump-prone regions,with a minimum threshold value of approximately 20,while correlations determined for other petrographic and elemental variables were more ambiguous. Results suggest that the composition of the coal itself is directly linked to how likely a coal is to have experienced a reportable dynamic failure event. These compositional controls are distinct from other previously established engineering and geologic criteria and represent a missing piece to the bump prediction puzzle.