The time evolution of coal structure during low temperature oxidation was investigated by oxidizing coal samples in air at 120℃ for periods of up to 14 days. The structure of the oxidized coal samples was char- acter...The time evolution of coal structure during low temperature oxidation was investigated by oxidizing coal samples in air at 120℃ for periods of up to 14 days. The structure of the oxidized coal samples was char- acterized by Fourier transform infrared spectroscopy (FFIR) and curve fitting analysis. The results show that carboxyl and ether groups are the main oxygen containing moieties in oxidized coal. Ethers are most abundant during the first 3 days of oxidation, thereafter carboxyl groups predominate. The content of carboxyl and ester functionality increases with oxidation time. The other oxygen containing groups vary in concentration over time. The amount of hydroxyl groups first decreases then increases and finally decrease again during the oxidation. The aliphatic structure and the degree of branching of the aliphatic chains is reduced as the oxidation proceeds. The proportion of aromatic structure increases with oxida- tion time. Obvious decomposition of aromatic rings occurs after about 9 days of oxidation. The aryl ester bands and the CH3/CH2 ratio both have a good linear relationship to oxidation time.展开更多
The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier tr...The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy (FTIR), and H20 adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105-200 ℃ and 500-700 ℃. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite. Variation of ether bond content can be divided into three stages; the content initially increased, then decreased, and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at 700 ℃ increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.展开更多
The occurrence state of methane is mostly controlled by coalfield geologicalstructures.The coal-bearing strata at Qidong coalmine experienced many tectonic cyclessince their formation.The gas content made by the compl...The occurrence state of methane is mostly controlled by coalfield geologicalstructures.The coal-bearing strata at Qidong coalmine experienced many tectonic cyclessince their formation.The gas content made by the complicated structural geologic systemat the coalfield is very different, which is obviously higher on the north side of the Weimiaofracture belt than that on the south side and near itself.This thesis discussed the gas occurrenceregularity based on the geometric characteristics of the geological structure andits regional tectonic evolution.This study can provide a foundation for coalfield exploitationand deal with coal and gas outburst.展开更多
基金supported by the Shaanxi Provincial Project of Special Foundation of Key Disciplinesthe Scientific Research Program Funded by Shaanxi Provincial Education Commission (No. 09JK583)the Seed Fund of Xi’an University of Science and Technology (No. 200745)
文摘The time evolution of coal structure during low temperature oxidation was investigated by oxidizing coal samples in air at 120℃ for periods of up to 14 days. The structure of the oxidized coal samples was char- acterized by Fourier transform infrared spectroscopy (FFIR) and curve fitting analysis. The results show that carboxyl and ether groups are the main oxygen containing moieties in oxidized coal. Ethers are most abundant during the first 3 days of oxidation, thereafter carboxyl groups predominate. The content of carboxyl and ester functionality increases with oxidation time. The other oxygen containing groups vary in concentration over time. The amount of hydroxyl groups first decreases then increases and finally decrease again during the oxidation. The aliphatic structure and the degree of branching of the aliphatic chains is reduced as the oxidation proceeds. The proportion of aromatic structure increases with oxida- tion time. Obvious decomposition of aromatic rings occurs after about 9 days of oxidation. The aryl ester bands and the CH3/CH2 ratio both have a good linear relationship to oxidation time.
基金Supported by the National Science Foundation of China(Nos.21566029,21566028and 21266017)
文摘The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy (FTIR), and H20 adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105-200 ℃ and 500-700 ℃. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite. Variation of ether bond content can be divided into three stages; the content initially increased, then decreased, and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at 700 ℃ increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.
基金Supported by the National Natural Science Foundation of China(40872103)
文摘The occurrence state of methane is mostly controlled by coalfield geologicalstructures.The coal-bearing strata at Qidong coalmine experienced many tectonic cyclessince their formation.The gas content made by the complicated structural geologic systemat the coalfield is very different, which is obviously higher on the north side of the Weimiaofracture belt than that on the south side and near itself.This thesis discussed the gas occurrenceregularity based on the geometric characteristics of the geological structure andits regional tectonic evolution.This study can provide a foundation for coalfield exploitationand deal with coal and gas outburst.