Neutron imaging techniques were investigated at Peking University based on a 4.5 MV Van de Graaff accelerator.The thermal neutron radiography,fast neutron radiography and fast neutron resonance radiography were tested...Neutron imaging techniques were investigated at Peking University based on a 4.5 MV Van de Graaff accelerator.The thermal neutron radiography,fast neutron radiography and fast neutron resonance radiography were tested.The low neutron flux limits the image quality.A new radio frequency quadrupole (RFQ) accelerator based on neutron source with a yield of 1 012 n/s is being set up.展开更多
Texture synthesis is widely used for modeling the appearance of virtual objects. However, traditional texture synthesis techniques eInphasize creation of optimal target textures, and pay insufficient attention to choi...Texture synthesis is widely used for modeling the appearance of virtual objects. However, traditional texture synthesis techniques eInphasize creation of optimal target textures, and pay insufficient attention to choice of suitable input texture exemplars. Currently, of taining texture exemplars from natural images is a labor intensive task for the artists, requiring careful photography and significant post- processing. In this paper, we present an automatic texture exemplar extraction method based on global and local textureness measures. To improve the efficiency of dominant texture identification, we first perform Poisson disk sampling to randomly and uniformly erop patches from a natural image. For global textureness assessment, we use a GIST descriptor to distinguish textured t)atches from non-textured patches, in conjunction with SVM prediction. To identify real texture, exemplars consisting solely of the dominant texture, we further measure the local textureness of a patch by extracting and matching the local structure (using t)inary Gabor pattern (BGP)) and dominant color features (using color histograms) between a patch and its sub-regions. Finally, we obtain optimal texture exemplars by scoring and ranking extracted patches using these global and local textureness measures We evaluate our method on a variety of images with different kinds of textures. A convincing visual comparison with textures mauually selected by an artist and a statistical study demonstrate its effectiveness.展开更多
基金supported by National Natural Science Foundation of China(No.10735020No.10575006)
文摘Neutron imaging techniques were investigated at Peking University based on a 4.5 MV Van de Graaff accelerator.The thermal neutron radiography,fast neutron radiography and fast neutron resonance radiography were tested.The low neutron flux limits the image quality.A new radio frequency quadrupole (RFQ) accelerator based on neutron source with a yield of 1 012 n/s is being set up.
基金supported in part by grants from the National Natural Science Foundation of China(Nos.61303101 and 61572328)the Shenzhen Research Foundation for Basic Research,China(Nos.JCYJ20150324140036846,JCYJ20170302153551588,CXZZ20140902160818443,CXZZ20140902102350474,CXZZ20150813151056544,JCYJ20150630105452814,JCYJ20160331114551175,and JCYJ20160608173051207)the Startup Research Fund of Shenzhen University(No.2013-827-000009)
文摘Texture synthesis is widely used for modeling the appearance of virtual objects. However, traditional texture synthesis techniques eInphasize creation of optimal target textures, and pay insufficient attention to choice of suitable input texture exemplars. Currently, of taining texture exemplars from natural images is a labor intensive task for the artists, requiring careful photography and significant post- processing. In this paper, we present an automatic texture exemplar extraction method based on global and local textureness measures. To improve the efficiency of dominant texture identification, we first perform Poisson disk sampling to randomly and uniformly erop patches from a natural image. For global textureness assessment, we use a GIST descriptor to distinguish textured t)atches from non-textured patches, in conjunction with SVM prediction. To identify real texture, exemplars consisting solely of the dominant texture, we further measure the local textureness of a patch by extracting and matching the local structure (using t)inary Gabor pattern (BGP)) and dominant color features (using color histograms) between a patch and its sub-regions. Finally, we obtain optimal texture exemplars by scoring and ranking extracted patches using these global and local textureness measures We evaluate our method on a variety of images with different kinds of textures. A convincing visual comparison with textures mauually selected by an artist and a statistical study demonstrate its effectiveness.