A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the puls...A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10kV/m to 370kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.展开更多
文摘A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10kV/m to 370kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.