Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with it...Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.展开更多
By combining the photochemical reaction and liquid–liquid extraction(PODS), we studied desulfurization of model fuel and FCC gasoline. The effects of air flow, illumination time, extractants, volume ratios of extract...By combining the photochemical reaction and liquid–liquid extraction(PODS), we studied desulfurization of model fuel and FCC gasoline. The effects of air flow, illumination time, extractants, volume ratios of extractant/fuel, and catalyst amounts on the desulfurization process of PODS were analyzed in detail. Under the conditions with the air as oxidant(150 ml·min^(-1)), the mixture of DMF–water as extractant(the volume ratio of extractant/oil of 0.5) and photo-irradiation time of 2 h, the sulfur removal rate reached only 42.63% and 39.54% for the model and FCC gasoline, respectively. Under the same conditions, the sulfur removal rate increased significantly up to79% for gasoline in the presence of Cu_2O catalyst(2 g·L^(-1)). The results suggest that the PODS combined with a Cu_2O catalyst seems to be a promising alternative for sulfur removal of gasoline.展开更多
基金The"863"Project of National Ministry of Science and Technology(2006AA03A175)
文摘Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.
基金Supported by the National Natural Science Foundation of China(Grant No.21766039)the Natural Science Foundation of Shaanxi Province(Grant No.14JS111)+1 种基金the Major Project of Yan'an Science and Technology Bureau(Grant No.2016CGZH-10)the Project of Yan'an University(YDT2017-2)
文摘By combining the photochemical reaction and liquid–liquid extraction(PODS), we studied desulfurization of model fuel and FCC gasoline. The effects of air flow, illumination time, extractants, volume ratios of extractant/fuel, and catalyst amounts on the desulfurization process of PODS were analyzed in detail. Under the conditions with the air as oxidant(150 ml·min^(-1)), the mixture of DMF–water as extractant(the volume ratio of extractant/oil of 0.5) and photo-irradiation time of 2 h, the sulfur removal rate reached only 42.63% and 39.54% for the model and FCC gasoline, respectively. Under the same conditions, the sulfur removal rate increased significantly up to79% for gasoline in the presence of Cu_2O catalyst(2 g·L^(-1)). The results suggest that the PODS combined with a Cu_2O catalyst seems to be a promising alternative for sulfur removal of gasoline.