通过建立保偏光纤侧视成像定轴系统仿真模型,分析了POL(Polarization observation by the Lens-effective tracing)定轴算法的精度,结果表明熊猫型保偏光纤应力区位置出现3.2μm的偏差时,该算法的定轴误差为1°左右。产生误差的主...通过建立保偏光纤侧视成像定轴系统仿真模型,分析了POL(Polarization observation by the Lens-effective tracing)定轴算法的精度,结果表明熊猫型保偏光纤应力区位置出现3.2μm的偏差时,该算法的定轴误差为1°左右。产生误差的主要原因是:由于应力区位置不严格对称,光纤后焦平面上所得的侧视成像光强分布中心光强值不再是最能准确反映偏振轴方位角位置的特征点。基于此,文中对POL定轴算法做了相应改进,以光强分布中实际最大光强值代替中心光强值作为特征点,然后利用特征点构建出标准曲线,进而采用间接相关的方法完成定轴。理论计算结果表明,改进后的定轴算法可以实现更高的理论定轴精度。展开更多
通过建立POL(Polarization Observation by The Lens-Effective Tracing)保偏光纤定轴系统仿真模型,分析了定轴过程中光纤发生微小位移以及相机像元尺寸所产生的误差。为了减少该种误差,实现自动对轴,提出了一种基于POL技术的保偏光纤...通过建立POL(Polarization Observation by The Lens-Effective Tracing)保偏光纤定轴系统仿真模型,分析了定轴过程中光纤发生微小位移以及相机像元尺寸所产生的误差。为了减少该种误差,实现自动对轴,提出了一种基于POL技术的保偏光纤定轴方法——POLF(Polarization Observation by The Lens-Effective with Fiber-Focus)定轴法。对该定轴方法进行了仿真验证,并通过对轴实验对其定轴精度进行了验证。实验结果证明POLF定轴算法能够实现优于1°的定轴精度。展开更多
文摘通过建立保偏光纤侧视成像定轴系统仿真模型,分析了POL(Polarization observation by the Lens-effective tracing)定轴算法的精度,结果表明熊猫型保偏光纤应力区位置出现3.2μm的偏差时,该算法的定轴误差为1°左右。产生误差的主要原因是:由于应力区位置不严格对称,光纤后焦平面上所得的侧视成像光强分布中心光强值不再是最能准确反映偏振轴方位角位置的特征点。基于此,文中对POL定轴算法做了相应改进,以光强分布中实际最大光强值代替中心光强值作为特征点,然后利用特征点构建出标准曲线,进而采用间接相关的方法完成定轴。理论计算结果表明,改进后的定轴算法可以实现更高的理论定轴精度。
文摘通过建立POL(Polarization Observation by The Lens-Effective Tracing)保偏光纤定轴系统仿真模型,分析了定轴过程中光纤发生微小位移以及相机像元尺寸所产生的误差。为了减少该种误差,实现自动对轴,提出了一种基于POL技术的保偏光纤定轴方法——POLF(Polarization Observation by The Lens-Effective with Fiber-Focus)定轴法。对该定轴方法进行了仿真验证,并通过对轴实验对其定轴精度进行了验证。实验结果证明POLF定轴算法能够实现优于1°的定轴精度。