To recover metal from copper slags,a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste(waste cathode carbon)was used to treat another...To recover metal from copper slags,a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste(waste cathode carbon)was used to treat another(copper slags).The waste cathode carbon is used not only as a reducing agent but also as a fluxing agent to decrease slag melting point.Upon holding for 60 min in air atmosphere first and then smelting with 14.4 wt%waste cathode carbon and 25 wt%CaO for 180 min in high purity Ar atmosphere at 1450℃,the recovery rates of Cu and Fe reach 95.89%and 94.64%,respectively,and meanwhile greater than 90%of the fluoride from waste cathode carbon is transferred into the final slag as CaF_(2) and Ca_(2)Si_(2)F_(2)O_(7),which makes the content of soluble F in the slag meet the national emission standard.Besides,the sulphur content in the obtained Fe-Cu alloy is low to 0.03 wt%.展开更多
An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be eff...An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.展开更多
An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic co...An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.展开更多
In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirc...In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirconium dioxide (ZrOz) ce- ramic foams were placed into the combustion zone of a regenerative thermal oxidizer (RTO). Different performance characteris- tics of the RTO and PRTO systems, including pressure drop, temperature distribution, emissions, and energy efficiency, were evaluated to study the effects of the porous inserts on non-premixed CH4 combustion. It was found that the PRTO system achieved a significant reduction in the NOx emission level and a fuel saving of approximately 30% compared to the RTO system. It is most suitable for a lean combustion process at an equivalence ratio 〈0.4 with NOx and CO emission levels within 0.002%~).003% and 0.001%q3.002%, respectively.展开更多
Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22...Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of a(Cu) and δ(Cu41Snll) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu) phase extended to 22%. The Cu-5%Sn-5%Ni-5%Ag quaternary alloy was composed of (Cu) and (Ag) phases under the containerless processing condition in a drop tube, and the solute microsegregation of (Cu) phase was obvious. When the Cu-5%Sn-5%Ni-5%Ag quaternary alloy was solidified by melt spinning method, microsegregation was suppressed and solute trapping occurred. The experimental results show that the microstructures of primary (Cu) phase in the two alloys transfer from coarse dendrites into equiaxed grains with the increase of cooling rate and undercooling, which is accompanied by the grain refinement effect.展开更多
基金Project(U1602272)supported by the National Natural Science Foundation of China。
文摘To recover metal from copper slags,a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste(waste cathode carbon)was used to treat another(copper slags).The waste cathode carbon is used not only as a reducing agent but also as a fluxing agent to decrease slag melting point.Upon holding for 60 min in air atmosphere first and then smelting with 14.4 wt%waste cathode carbon and 25 wt%CaO for 180 min in high purity Ar atmosphere at 1450℃,the recovery rates of Cu and Fe reach 95.89%and 94.64%,respectively,and meanwhile greater than 90%of the fluoride from waste cathode carbon is transferred into the final slag as CaF_(2) and Ca_(2)Si_(2)F_(2)O_(7),which makes the content of soluble F in the slag meet the national emission standard.Besides,the sulphur content in the obtained Fe-Cu alloy is low to 0.03 wt%.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51620105013,51904351)Innovation-Driven Project of Central South University,China(No.2020CX028)+1 种基金Natural Science Fund for Distinguished Young Scholar of Hunan Province,China(No.2019JJ20031)the National Key R&D Program of China(No.2019YFC1907400)。
文摘An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.
文摘An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.
文摘In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirconium dioxide (ZrOz) ce- ramic foams were placed into the combustion zone of a regenerative thermal oxidizer (RTO). Different performance characteris- tics of the RTO and PRTO systems, including pressure drop, temperature distribution, emissions, and energy efficiency, were evaluated to study the effects of the porous inserts on non-premixed CH4 combustion. It was found that the PRTO system achieved a significant reduction in the NOx emission level and a fuel saving of approximately 30% compared to the RTO system. It is most suitable for a lean combustion process at an equivalence ratio 〈0.4 with NOx and CO emission levels within 0.002%~).003% and 0.001%q3.002%, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 50971105)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106102120052)the NPU Foundation for Fundamental Research (Grant No. G9KY1021)
文摘Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of a(Cu) and δ(Cu41Snll) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu) phase extended to 22%. The Cu-5%Sn-5%Ni-5%Ag quaternary alloy was composed of (Cu) and (Ag) phases under the containerless processing condition in a drop tube, and the solute microsegregation of (Cu) phase was obvious. When the Cu-5%Sn-5%Ni-5%Ag quaternary alloy was solidified by melt spinning method, microsegregation was suppressed and solute trapping occurred. The experimental results show that the microstructures of primary (Cu) phase in the two alloys transfer from coarse dendrites into equiaxed grains with the increase of cooling rate and undercooling, which is accompanied by the grain refinement effect.