Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b...Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions.展开更多
Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly ...Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly limits the development of the SLM.In this study,the 316L fine powder and coarse powder with a mass ratio of 80:20,70:30 and 60:40 were mixed using a ball milling and the samples with a relative density greater than 97%were prepared by SLM.The results show that the intricate temperature gradients and surface tension gradients in SLM will produce Marangoni flow,forming a typical molten pool morphology,cellular and strip subgrain structures.And as the proportion of coarse powder increases,the scanning track morphology changes from smooth to undulating;the morphology of the molten pool and subgrain structure are weakened.Meanwhile,the unmelted particles appear on the surface of the SLM sample.On the premise of an introducing appropriate amount of large particle size powder(20%),the SLM samples still have good mechanical properties(662 MPa,47%).展开更多
Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros...Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.展开更多
The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction....The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.展开更多
基金the financial supports from the Shaanxi Province Key Research and Development Projects,China(No.2023KXJ-071)the National Natural Science Foundation of China(Nos.52274402,52174381)。
文摘Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions.
基金Projects(51671152,51304153,51504191,51874225)supported by the National Natural Science Foundation of ChinaProject(14JK512)supported by the Natural Science Foundation of Shaanxi Educational Committee,China+1 种基金Project(18JC019)supported by Shaanxi Provincial Department of Education Industrialization Project,ChinaProject(14JK1512)supported by Shaanxi Provincial Department of Education Natural Science Special Project,China
文摘Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly limits the development of the SLM.In this study,the 316L fine powder and coarse powder with a mass ratio of 80:20,70:30 and 60:40 were mixed using a ball milling and the samples with a relative density greater than 97%were prepared by SLM.The results show that the intricate temperature gradients and surface tension gradients in SLM will produce Marangoni flow,forming a typical molten pool morphology,cellular and strip subgrain structures.And as the proportion of coarse powder increases,the scanning track morphology changes from smooth to undulating;the morphology of the molten pool and subgrain structure are weakened.Meanwhile,the unmelted particles appear on the surface of the SLM sample.On the premise of an introducing appropriate amount of large particle size powder(20%),the SLM samples still have good mechanical properties(662 MPa,47%).
基金The authors are grateful for the financial supports from the National Key R&D Program of China(2017YFB1104100)the New Young Teachers Initiation Plan,China(18X100040027)+1 种基金the National Natural Science Foundation of China(51971142)the China Postdoctoral Science Foundation(19Z102060057).
文摘Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.
基金Project(51901207) supported by the National Natural Science Foundation of ChinaProject(2018M632796) supported by the China Postdoctoral Science FoundationProjects(19A430024, 21A430037) supported by the Plan of Henan Key Scientific Research Project of Universities,China。
文摘The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.