In order to improve the corrosion resistance of carbon steel,Hastelloy coatings were prepared on E235steel substrate by ahigh power diode laser with laser scanning speeds of6and12mm/s,respectively.The interface betwee...In order to improve the corrosion resistance of carbon steel,Hastelloy coatings were prepared on E235steel substrate by ahigh power diode laser with laser scanning speeds of6and12mm/s,respectively.The interface between the coating and substratewas firstly exposed by dissolving off the substrate.Its microstructure,composition and mechanical properties were systemicallystudied.Special“edges”along the grain boundary were found at coating/substrate interface.These“edges”consisted of intergranularcorrosion area and real grain boundary.The interface of coating mainly displayed austenite structure ascribed to the rapidsolidification as well as the dilution of Ni during preparation.Additionally,Hastelloy coating and its interface prepared at the speedof12mm/s showed higher hardness than that prepared at the speed of6mm/s.Grain boundaries had higher friction coefficient thangrains at both coating/substrate interfaces.Moreover,the interface at higher laser scanning speed exhibited smaller grains,lowerdilution rates of Ni and Fe as well as a better tribological property.展开更多
基金Project supported by the New Staff Research Start-up Fund and the Innovation Fund(School of Materials Science and Engineering) of Southwest Petroleum University,China
文摘In order to improve the corrosion resistance of carbon steel,Hastelloy coatings were prepared on E235steel substrate by ahigh power diode laser with laser scanning speeds of6and12mm/s,respectively.The interface between the coating and substratewas firstly exposed by dissolving off the substrate.Its microstructure,composition and mechanical properties were systemicallystudied.Special“edges”along the grain boundary were found at coating/substrate interface.These“edges”consisted of intergranularcorrosion area and real grain boundary.The interface of coating mainly displayed austenite structure ascribed to the rapidsolidification as well as the dilution of Ni during preparation.Additionally,Hastelloy coating and its interface prepared at the speedof12mm/s showed higher hardness than that prepared at the speed of6mm/s.Grain boundaries had higher friction coefficient thangrains at both coating/substrate interfaces.Moreover,the interface at higher laser scanning speed exhibited smaller grains,lowerdilution rates of Ni and Fe as well as a better tribological property.