期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
武钢高炉直接还原度及碳熔损率的计算与分析 被引量:2
1
作者 任玉明 薛改凤 +1 位作者 左红星 王元生 《武钢技术》 CAS 2015年第4期5-8,共4页
对武钢7座高炉的直接还原度、碳熔损量、焦炭起始反应温度进行了研究,结果表明:武钢高炉直接还原度偏高且波动范围宽,为了降低焦比,需要发展间接还原;高炉碳熔损量在20%-25%之间,为了能够更加准确地指导高炉生产,需要进行恒定反应性的... 对武钢7座高炉的直接还原度、碳熔损量、焦炭起始反应温度进行了研究,结果表明:武钢高炉直接还原度偏高且波动范围宽,为了降低焦比,需要发展间接还原;高炉碳熔损量在20%-25%之间,为了能够更加准确地指导高炉生产,需要进行恒定反应性的焦炭热性能实验;随着直接还原度降低,高炉煤气利用率呈线性升高,焦比呈线性降低;焦炭的起始反应温度受配煤比、工艺条件、炉型等因素的影响,其中工艺条件的影响最大。 展开更多
关键词 焦炭 直接还原度 熔损率 起始反应温度
下载PDF
焦炭高温热性质的研究
2
作者 任玉明 王元生 +1 位作者 鲍俊芳 陈昊 《燃料与化工》 CAS 2023年第4期11-15,共5页
研究了焦炭在不同反应温度、不同气体流量、不同气体成分、不同熔损率下的热性质变化规律。通过研究发现焦炭在1100℃时的反应模式主要为渗透反应;热强度随着熔损率的升高呈降低的趋势;气体成分、气体流量变化对热强度影响不大。1 200... 研究了焦炭在不同反应温度、不同气体流量、不同气体成分、不同熔损率下的热性质变化规律。通过研究发现焦炭在1100℃时的反应模式主要为渗透反应;热强度随着熔损率的升高呈降低的趋势;气体成分、气体流量变化对热强度影响不大。1 200℃时的反应模式是以渗透反应为主,兼有一定程度的表面反应;热强度先随着熔损率的升高呈降低的趋势,当熔损率> 25%时热强度急剧下降;CO_(2)比例≥25%后,气体成分变化对热强度影响不大;气体流量变化对热强度影响不大。1 350℃时反应模式主要为表面反应;热强度随着熔损率的升高变化不大,始终能够保持较高的热强度;随着CO_(2)比例的增加,焦炭热强度呈减小的趋势;气体流量变化对热强度影响不大。 展开更多
关键词 焦炭 高温热性质 反应温度 气体流量 气体成分 熔损率
下载PDF
Wavelength dependent loss of splice of single-mode fibers 被引量:1
3
作者 YANG Bo DUAN Ji-an +1 位作者 XIE Zheng XIAO Hong-feng 《Journal of Central South University》 SCIE EI CAS 2013年第7期1832-1837,共6页
After reviewing three different definitions of mode field diameter of single-mode fibers, coupled efficiency calculation methods associated with lateral offset, longitude separation and wavelength, the effects produce... After reviewing three different definitions of mode field diameter of single-mode fibers, coupled efficiency calculation methods associated with lateral offset, longitude separation and wavelength, the effects produced by them, and the influences of splicing defects were discussed in detail. The regularities of the effects were studied according to the first order derivation of couple efficiency formula, and a simplified formula for couple efficiency calculation was presented under the circumstance of slight misalignment, with respect to wavelength, 2, and in a good agreement with the theoretical model. The simplified formula provides a new but simple approach to evaluate wavelength dependent couple efficiency of single-mode fibers. Theoretical analyses and numerical calculations show that, when those defects exist, the wavelength produces additional effects on the couple loss that growth of wavelength causes an increase on the couple efficiency for the lateral offset or longitude separation whereas lessens the couple efficiency due to angular misalignment or mode fields mismatching, and that the wavelength degrades the couple efficiency distinctly when λ≥2.5 μm whereas it distorts the couple slightly in range of λ≤2λ≤2 μm. 展开更多
关键词 wavelength dependent loss couple efficiency single-mode fiber cut-offwavelength
下载PDF
Mathematical Model Prediction of Heat Losses from a Pilot Sirosmelt Furnace
4
作者 Yuhua Pan Michael A. Somerville 《Journal of Mechanics Engineering and Automation》 2015年第9期487-496,共10页
A mathematical model was developed for simulating heat transfer through the sidewall, bottom and top of a pilot scale TSL (Top-Submerged-Lance) Sirosmelt furnace. With a feed rate of about 50 kg/h, the furnace has b... A mathematical model was developed for simulating heat transfer through the sidewall, bottom and top of a pilot scale TSL (Top-Submerged-Lance) Sirosmelt furnace. With a feed rate of about 50 kg/h, the furnace has been used for investigating the technical feasibility of a variety of pyrometallurgical processes for smelting nonferrous and ferrous metals and for high temperature processing of solid wastes including electronic scraps, etc. The model was based on numerical solution of energy transport equations governing heat conduction in multi-layered linings in the sidewall, bottom and top lid of the furnace as well as convection and radiation of heat from the furnace outer surfaces to the ambient. Imperfect contacts between two neighboring solid lining layers due to air gap formation were considered. Temperature profiles were determined across the furnace bottom, top lid and three sections of the furnace sidewall, from which the heat loss rates through the corresponding parts of the furnace were calculated. The modelling results indicate that approximately 88% of heat is lost from the furnace sidewall, 7-8% from the bottom and 4-5% from the top lid. With increasing melt bath temperature, the proportion of total heat loss from the bottom decreases whereas that from the top lid increases and that from the sidewall is little changed. For a bath temperature of 1,300℃, total absolute heat loss rate from the furnace was found to be close to 12 kW. 展开更多
关键词 Heat transfer heat loss TSL SMELTING MODELLING simulation.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部