In this paper, we present the coil-to-globule(CG) transitions of homopolymers and multiblock copolymers with different topology and stiffness by using molecular dynamics with integrated tempering sampling method. The ...In this paper, we present the coil-to-globule(CG) transitions of homopolymers and multiblock copolymers with different topology and stiffness by using molecular dynamics with integrated tempering sampling method. The sampling method was a novel enhanced method that efficiently sampled the energy space with low computational costs. The method proved to be efficient and precise to study the structural transitions of polymer chains with complex topological constraint, which may not be easily done by using conventional Monte Carlo method. The topological constraint affects the globule shape of the polymer chain, thus further influencing the CG transition. We found that increasing the topological constraint generally decreased CG transition temperature for homopolymers. For semiflexible chains, an additional first-order like symmetry-broken transition emerged. For block copolymers, the topological constraint did not obviously change the transition temperature, but greatly reduced the energy signal of the CG transition.展开更多
基金supported by the National Basic Research Program of China(2012CB821500)the National Natural Science Foundation of China(21025416)Jilin Province Science and Technology Development Plan(20140519004JH)
文摘In this paper, we present the coil-to-globule(CG) transitions of homopolymers and multiblock copolymers with different topology and stiffness by using molecular dynamics with integrated tempering sampling method. The sampling method was a novel enhanced method that efficiently sampled the energy space with low computational costs. The method proved to be efficient and precise to study the structural transitions of polymer chains with complex topological constraint, which may not be easily done by using conventional Monte Carlo method. The topological constraint affects the globule shape of the polymer chain, thus further influencing the CG transition. We found that increasing the topological constraint generally decreased CG transition temperature for homopolymers. For semiflexible chains, an additional first-order like symmetry-broken transition emerged. For block copolymers, the topological constraint did not obviously change the transition temperature, but greatly reduced the energy signal of the CG transition.