In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chem...In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chemical analysis results show that under the argon atmosphere, there is more dissipation in Al and Ti, whereas it is reduced by establishing the vacuum atmosphere. The gas analysis results show that the oxygen and nitrogen contents of the samples decrease with increasing vacuum degree. However, there is no dissipation in the gas content of the samples in higher degree of vacuum. In addition, the thermodynamic calculations show that the probability of TiO2 and Al2O3 formation is high due to the small value of the equilibrium oxygen. Higher vacuum degree reduces the tensile and yield strength of the alloys, while it enhances the elongation and reduction of area values due to the lower amount of the inclusions and evaporation of Al and Ti under higher vacuum. On the other hand, increasing vacuum degree changes the fracture mode from brittle to ductile.展开更多
To investigate the effect of the arc re-melting on the microstructure,mechanical and tribological properties of the 390 A alloy,its ingot produced by the conventional induction melting method was subjected to the arc ...To investigate the effect of the arc re-melting on the microstructure,mechanical and tribological properties of the 390 A alloy,its ingot produced by the conventional induction melting method was subjected to the arc re-melting process.The microstructure of the 390 A alloy was examined by OM and SEM.Mechanical properties of the 390 A alloy were determined by the Brinell method and tensile tests.Tribological properties were investigated with a ball-on-disc type tester.It was observed that the microstructure of both conventional induction melted and arc re-melted 390 A alloys consisted ofα(Al),eutectic Al-12 Si,primary silicon particles,θ-CuAl_(2),β-Al_(5) FeSi,δ-Al_(4) FeSi_(2),andα-Al_(15)(FeMnCu)3 Si_(2) phases.Re-melting with the arc process caused grain refinement in these phases.In addition,after this process,theα(Al)phase and primary silicon particles were dispersed more uniformly,and sharp edges of primary silicon particles became round.The arc re-melting process resulted in an increase in the hardness of the 390 A alloy produced by the conventional method from 102 HB to 118 HB and the tensile strength from 130 to 240 MPa.It also caused an increase in the wear resistance of the 390 A alloy and a decrease in the friction coefficient.展开更多
Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological beha...Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological behavior of ZnO-Bi_2O_3-B_2O_3 system glass melt,the properties of viscosity,thermal expansion,fluxion property and wetting process between cylinder samples and stainless steel were investigated with the rotating crucible viscometer,dilato meter and high-temperature microscope.The structure of sintered glass samples was investigated with scanning electron microscope.The results show that the B_2O_3 content increasing in B_1-B_3 at the given temperature between 400 ℃ and 500 ℃ leads to the increasing of the sample viscosity.When the amount of B_2O_3 increases from 5.24%to 9.24%(mass fraction),the coefficients of thermal expansion of glass samples decrease smoothly from 10.94×10^(-6) to10.71×10^(-6) and 10.38×10^(-6) ℃^(-1) respectively.In the case of sealing temperature,its value increases from 453 ℃ to 494 ℃.ZnO-Bi_2O_3-B_2O_3 system low-melting glass powder sintering was with viscous liquid to participate,which could make the densification of glass sample more effective and more efficient.With the content of B_2O_3 increasing,the wetting angle between the glasses samples and stainless steel could also increase,and the resulting appropriate sealing temperature range is 460-490 ℃.展开更多
文摘In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chemical analysis results show that under the argon atmosphere, there is more dissipation in Al and Ti, whereas it is reduced by establishing the vacuum atmosphere. The gas analysis results show that the oxygen and nitrogen contents of the samples decrease with increasing vacuum degree. However, there is no dissipation in the gas content of the samples in higher degree of vacuum. In addition, the thermodynamic calculations show that the probability of TiO2 and Al2O3 formation is high due to the small value of the equilibrium oxygen. Higher vacuum degree reduces the tensile and yield strength of the alloys, while it enhances the elongation and reduction of area values due to the lower amount of the inclusions and evaporation of Al and Ti under higher vacuum. On the other hand, increasing vacuum degree changes the fracture mode from brittle to ductile.
文摘To investigate the effect of the arc re-melting on the microstructure,mechanical and tribological properties of the 390 A alloy,its ingot produced by the conventional induction melting method was subjected to the arc re-melting process.The microstructure of the 390 A alloy was examined by OM and SEM.Mechanical properties of the 390 A alloy were determined by the Brinell method and tensile tests.Tribological properties were investigated with a ball-on-disc type tester.It was observed that the microstructure of both conventional induction melted and arc re-melted 390 A alloys consisted ofα(Al),eutectic Al-12 Si,primary silicon particles,θ-CuAl_(2),β-Al_(5) FeSi,δ-Al_(4) FeSi_(2),andα-Al_(15)(FeMnCu)3 Si_(2) phases.Re-melting with the arc process caused grain refinement in these phases.In addition,after this process,theα(Al)phase and primary silicon particles were dispersed more uniformly,and sharp edges of primary silicon particles became round.The arc re-melting process resulted in an increase in the hardness of the 390 A alloy produced by the conventional method from 102 HB to 118 HB and the tensile strength from 130 to 240 MPa.It also caused an increase in the wear resistance of the 390 A alloy and a decrease in the friction coefficient.
基金Project(2012BAA08B04)supported by the National“Twelfth Five-Year”Plan for Science&Technology Support of China
文摘Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological behavior of ZnO-Bi_2O_3-B_2O_3 system glass melt,the properties of viscosity,thermal expansion,fluxion property and wetting process between cylinder samples and stainless steel were investigated with the rotating crucible viscometer,dilato meter and high-temperature microscope.The structure of sintered glass samples was investigated with scanning electron microscope.The results show that the B_2O_3 content increasing in B_1-B_3 at the given temperature between 400 ℃ and 500 ℃ leads to the increasing of the sample viscosity.When the amount of B_2O_3 increases from 5.24%to 9.24%(mass fraction),the coefficients of thermal expansion of glass samples decrease smoothly from 10.94×10^(-6) to10.71×10^(-6) and 10.38×10^(-6) ℃^(-1) respectively.In the case of sealing temperature,its value increases from 453 ℃ to 494 ℃.ZnO-Bi_2O_3-B_2O_3 system low-melting glass powder sintering was with viscous liquid to participate,which could make the densification of glass sample more effective and more efficient.With the content of B_2O_3 increasing,the wetting angle between the glasses samples and stainless steel could also increase,and the resulting appropriate sealing temperature range is 460-490 ℃.