With the aim of developing a new silicon refining process for production of solar grade silicon, a low-temperature refining technique referred to as "solidification refining of silicon with a Si-Al solvent at low tem...With the aim of developing a new silicon refining process for production of solar grade silicon, a low-temperature refining technique referred to as "solidification refining of silicon with a Si-Al solvent at low temperature" was studied. The refinability of silicon by the partial solidification from a Si-Al solvent was discussed with thermodynamic evaluation for the impurity segregation between solid silicon and a Si-Al solvent. Impurity segregation ratios were measured by using temperature gradient zone melting method for phosphorus and boron and were estimated by the thermodynamic calculation for metallic impurities. The excellent refinability was clarified from the extremely small segregation ratios of impurities at lower temperature and was also confirmed by the test refining with the partial solidification under the induction heating. Furthermore, silicon crystal growth was studied by directional solidification experiments of a Si-Al alloy, and was estimated to be diffusion controlled.展开更多
In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chem...In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chemical analysis results show that under the argon atmosphere, there is more dissipation in Al and Ti, whereas it is reduced by establishing the vacuum atmosphere. The gas analysis results show that the oxygen and nitrogen contents of the samples decrease with increasing vacuum degree. However, there is no dissipation in the gas content of the samples in higher degree of vacuum. In addition, the thermodynamic calculations show that the probability of TiO2 and Al2O3 formation is high due to the small value of the equilibrium oxygen. Higher vacuum degree reduces the tensile and yield strength of the alloys, while it enhances the elongation and reduction of area values due to the lower amount of the inclusions and evaporation of Al and Ti under higher vacuum. On the other hand, increasing vacuum degree changes the fracture mode from brittle to ductile.展开更多
文摘With the aim of developing a new silicon refining process for production of solar grade silicon, a low-temperature refining technique referred to as "solidification refining of silicon with a Si-Al solvent at low temperature" was studied. The refinability of silicon by the partial solidification from a Si-Al solvent was discussed with thermodynamic evaluation for the impurity segregation between solid silicon and a Si-Al solvent. Impurity segregation ratios were measured by using temperature gradient zone melting method for phosphorus and boron and were estimated by the thermodynamic calculation for metallic impurities. The excellent refinability was clarified from the extremely small segregation ratios of impurities at lower temperature and was also confirmed by the test refining with the partial solidification under the induction heating. Furthermore, silicon crystal growth was studied by directional solidification experiments of a Si-Al alloy, and was estimated to be diffusion controlled.
文摘In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chemical analysis results show that under the argon atmosphere, there is more dissipation in Al and Ti, whereas it is reduced by establishing the vacuum atmosphere. The gas analysis results show that the oxygen and nitrogen contents of the samples decrease with increasing vacuum degree. However, there is no dissipation in the gas content of the samples in higher degree of vacuum. In addition, the thermodynamic calculations show that the probability of TiO2 and Al2O3 formation is high due to the small value of the equilibrium oxygen. Higher vacuum degree reduces the tensile and yield strength of the alloys, while it enhances the elongation and reduction of area values due to the lower amount of the inclusions and evaporation of Al and Ti under higher vacuum. On the other hand, increasing vacuum degree changes the fracture mode from brittle to ductile.