Effective electrocatalysis is crucial for enhancing the efficiency of water splitting to obtain clean fuels.Herein,we report a system of interesting and high-performance Sr-doped perovskite electrocatalysts with porou...Effective electrocatalysis is crucial for enhancing the efficiency of water splitting to obtain clean fuels.Herein,we report a system of interesting and high-performance Sr-doped perovskite electrocatalysts with porous structures,obtained via a facile molten salt method and applied in the oxygen evolution reaction(OER).With increasing the Sr content,the valence states of Co and Fe ions do not clearly increase,according to the Co-L2,3 and Fe-L2,3 as well as the Co-K and the Fe-K X-ray absorption spectroscopy,whereas doped holes are clearly observed in the 0-K edge.High-resolution transmission electron microscopy indicates the appearance of an amorphous layer after the electrochemical reaction.We conclude that the formation of the amorphous layer at the surface,induced by Sr doping,is crucial for achieving high OER activity,and we offer insights into the self-reconstruction of the OER catalyst.展开更多
基金supported by the “Transformational Technologies for clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2100000)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2014237)+1 种基金the National Natural Science Foundation of China(21876183)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20180066)~~
文摘Effective electrocatalysis is crucial for enhancing the efficiency of water splitting to obtain clean fuels.Herein,we report a system of interesting and high-performance Sr-doped perovskite electrocatalysts with porous structures,obtained via a facile molten salt method and applied in the oxygen evolution reaction(OER).With increasing the Sr content,the valence states of Co and Fe ions do not clearly increase,according to the Co-L2,3 and Fe-L2,3 as well as the Co-K and the Fe-K X-ray absorption spectroscopy,whereas doped holes are clearly observed in the 0-K edge.High-resolution transmission electron microscopy indicates the appearance of an amorphous layer after the electrochemical reaction.We conclude that the formation of the amorphous layer at the surface,induced by Sr doping,is crucial for achieving high OER activity,and we offer insights into the self-reconstruction of the OER catalyst.