根据近些年国内外耐锌腐蚀的研究成果,将耐锌腐蚀方法分为两大类:自身耐锌腐蚀材料和表面改性处理。自身耐锌腐蚀材料主要集中在Fe-Cr-Mn、Fe-B、Ti Al Nb等材料上,表面处理主要集中在WC-Co、Mo B-Co Cr、陶瓷等涂层上。两种方法都获得...根据近些年国内外耐锌腐蚀的研究成果,将耐锌腐蚀方法分为两大类:自身耐锌腐蚀材料和表面改性处理。自身耐锌腐蚀材料主要集中在Fe-Cr-Mn、Fe-B、Ti Al Nb等材料上,表面处理主要集中在WC-Co、Mo B-Co Cr、陶瓷等涂层上。两种方法都获得一定的研究成果,但也有一些不足。自身耐锌腐蚀材料的耐熔锌腐蚀虽有改善,但在液锌中也只是延缓了腐蚀速度,最终仍然会腐蚀失效。表面涂层耐蚀性相对较好,但是在锌液中仍然会发生裂纹腐蚀,并且涂层和基体之间的物理匹配性较差,脆性较大,工件的轻微碰撞很容易造成涂层的脱落,加速工件的腐蚀,不宜用于实际生产。充分利用陶瓷耐腐蚀、耐高温、硬度高的优点,以及金属室温强度好、延展性好的优点,开发陶瓷金属复合涂层,可能会成为下一步沉没辊基础件熔融锌液腐蚀研究的主要方向。展开更多
Based on the existing form of Zn2 Si O4 in willemite, the chemical precipitation method was used to synthesize Zn2 Si O4.Through the orthogonal experimentation, the reaction conditions of melten Na OH decomposing Zn2 ...Based on the existing form of Zn2 Si O4 in willemite, the chemical precipitation method was used to synthesize Zn2 Si O4.Through the orthogonal experimentation, the reaction conditions of melten Na OH decomposing Zn2 Si O4 were optimized, and the optimal experimental conditions include reaction temperature of 400 °C, reaction time of 4 h, and alkaline-to-ore molar ratio of 20:1.Based on the optimized experiment, on-line detection for the alkali leaching was made by using Raman spectroscopy; XRD was used to analyze the structure of water leaching residue, to explore the reaction mechanism of Na OH decomposing Zn2 Si O4. The results show that during the reaction process, the Si — O bond in Si O4 is destroyed, and the Na OH inserts itself into the silicate lattice,producing an immediate Na2 Zn Si O4 product. After the alkali leaching process, Zn2+ can be separated from the Si O4 array, which can be released out of the silicate in the form of ZnO.展开更多
Zinc(Zn)has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility.In this work,rare earth neodymium(Nd)was introduced into a Zn-based alloy fa...Zinc(Zn)has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility.In this work,rare earth neodymium(Nd)was introduced into a Zn-based alloy fabricated using a laser powder bed fusion(LPBF)process.Results showed that addition of Nd significantly improved the melt fluidity and reduced the evaporation of Zn,thereby achieving parts with a high densification rate of 98.71%.Significantly,the Nd alloying treatment effectively refined the grain size from 25.3 to 6.2μm.Nd Zn5 eutectics precipitated and contributed to a second-phase strengthening effect.As a result,the tensile strength increased to(119.3±5.1)MPa and the Vickers hardness to(76.2±4.1).Moreover,the Zn–Nd alloy exhibited good anti-inflammatory activity,as the Nd ions released during degradation had a strong affinity with cell membrane phospholipids and consequently inhibited the release of inflammatory cytokines.It also presented favorable cytocompatibility,showing great potential as a bone repair material.展开更多
文摘根据近些年国内外耐锌腐蚀的研究成果,将耐锌腐蚀方法分为两大类:自身耐锌腐蚀材料和表面改性处理。自身耐锌腐蚀材料主要集中在Fe-Cr-Mn、Fe-B、Ti Al Nb等材料上,表面处理主要集中在WC-Co、Mo B-Co Cr、陶瓷等涂层上。两种方法都获得一定的研究成果,但也有一些不足。自身耐锌腐蚀材料的耐熔锌腐蚀虽有改善,但在液锌中也只是延缓了腐蚀速度,最终仍然会腐蚀失效。表面涂层耐蚀性相对较好,但是在锌液中仍然会发生裂纹腐蚀,并且涂层和基体之间的物理匹配性较差,脆性较大,工件的轻微碰撞很容易造成涂层的脱落,加速工件的腐蚀,不宜用于实际生产。充分利用陶瓷耐腐蚀、耐高温、硬度高的优点,以及金属室温强度好、延展性好的优点,开发陶瓷金属复合涂层,可能会成为下一步沉没辊基础件熔融锌液腐蚀研究的主要方向。
基金Project(2007CB613603)supported by the National Basic Research Program of ChinaProject(51204037)supported by the National Natural Science Foundation of China
文摘Based on the existing form of Zn2 Si O4 in willemite, the chemical precipitation method was used to synthesize Zn2 Si O4.Through the orthogonal experimentation, the reaction conditions of melten Na OH decomposing Zn2 Si O4 were optimized, and the optimal experimental conditions include reaction temperature of 400 °C, reaction time of 4 h, and alkaline-to-ore molar ratio of 20:1.Based on the optimized experiment, on-line detection for the alkali leaching was made by using Raman spectroscopy; XRD was used to analyze the structure of water leaching residue, to explore the reaction mechanism of Na OH decomposing Zn2 Si O4. The results show that during the reaction process, the Si — O bond in Si O4 is destroyed, and the Na OH inserts itself into the silicate lattice,producing an immediate Na2 Zn Si O4 product. After the alkali leaching process, Zn2+ can be separated from the Si O4 array, which can be released out of the silicate in the form of ZnO.
基金the National Natural Science Foundation of China(Nos.51935014,82072084,and 81871498)the Jiangxi Provincial Natural Science Foundation of China(Nos.20192ACB20005 and 2020ACB214004)+4 种基金the Jiangxi Provincial Key R&D Program(No.20201BBE51012)the Guangdong Provincial Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2018)the China Postdoctoral Science Foundation(No.2020M682114)the Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technologythe Project of Hunan Provincial Science and Technology Plan(No.2017RS3008),China。
文摘Zinc(Zn)has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility.In this work,rare earth neodymium(Nd)was introduced into a Zn-based alloy fabricated using a laser powder bed fusion(LPBF)process.Results showed that addition of Nd significantly improved the melt fluidity and reduced the evaporation of Zn,thereby achieving parts with a high densification rate of 98.71%.Significantly,the Nd alloying treatment effectively refined the grain size from 25.3 to 6.2μm.Nd Zn5 eutectics precipitated and contributed to a second-phase strengthening effect.As a result,the tensile strength increased to(119.3±5.1)MPa and the Vickers hardness to(76.2±4.1).Moreover,the Zn–Nd alloy exhibited good anti-inflammatory activity,as the Nd ions released during degradation had a strong affinity with cell membrane phospholipids and consequently inhibited the release of inflammatory cytokines.It also presented favorable cytocompatibility,showing great potential as a bone repair material.