Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and ...Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and challenges in post-combustion CO2 capture using amine-based chemical absorption technologies.In addition,this review provides current types and emerging trends for chemical solvents.The issues and performance of amine solvents are reviewed and addressed in terms of thermodynamics,kinetics,mass transfer,regeneration and solvent management.This review also looks at emerging and future trends in post-combustion CO2 capture using chemical solvents in the near to mid-term.展开更多
Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electroc...Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)--although highly efficient--undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electro- chemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts.展开更多
基金Supported by the National Natural Science Foundation of China(21276068,U1362112and 21376067,21476064)the National Key Technology R&D Program(2012BAC26B01)+4 种基金Innovative Research Team Development Plan of the Ministry of Education of the People's Republic of China(IRT1238)Specialized Research Fund for the Doctoral Program of Higher Education(20130161110025)Technology Development contract(Shanyan 12-34)Innovative Research Program for Graduate Student of Hunan Province,China(CX2013B158)Key project of international®ional scientific and technological cooperation of Hunan Provincial science and technology plan(2014WK2037)
文摘Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and challenges in post-combustion CO2 capture using amine-based chemical absorption technologies.In addition,this review provides current types and emerging trends for chemical solvents.The issues and performance of amine solvents are reviewed and addressed in terms of thermodynamics,kinetics,mass transfer,regeneration and solvent management.This review also looks at emerging and future trends in post-combustion CO2 capture using chemical solvents in the near to mid-term.
文摘Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)--although highly efficient--undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electro- chemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts.