The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entro...The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Fhrther it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.展开更多
Accuracy and roughness, proposed by Pawlak(1982), might draw a conclusion inconsistent with our intuition in some cases. This letter analyzes the limitations in these measures and proposes improved accuracy and roughn...Accuracy and roughness, proposed by Pawlak(1982), might draw a conclusion inconsistent with our intuition in some cases. This letter analyzes the limitations in these measures and proposes improved accuracy and roughness measures based on information theory.展开更多
We obtain uncertainty and certainty relations of state-independent form for the three Paufi observables with use of the Renyi entropies of order α∈ (0; 1]. It is shown that these entropic bounds are tight in the s...We obtain uncertainty and certainty relations of state-independent form for the three Paufi observables with use of the Renyi entropies of order α∈ (0; 1]. It is shown that these entropic bounds are tight in the sense that they are always reached with certain pure states. A new result is the condition for equality in Renyi-entropy uncertainty relations for the Pauli observables. Upper entropic bounds in the pure-state case are also novel. Combining the presented bounds leads to a band, in which the rescaled average Renyi a-entropy ranges for a pure measured state. A width of this band is compared with the Tsallis formulation derived previously.展开更多
The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that quantum entanglement as well as more general notions of correlations,such as quantum discord,can relax or tighten the entropic ...The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that quantum entanglement as well as more general notions of correlations,such as quantum discord,can relax or tighten the entropic uncertainty relation in the presence of an ancillary system.We explored the behaviour of entropic uncertainty relations for system of two qubits—one of which subjects to several forms of independent quantum noise,in both Markovian and non-Markovian regimes.The uncertainties and their lower bounds,identified by the entropic uncertainty relations,increase under independent local unital Markovian noisy channels,but they may decrease under non-unital channels.The behaviour of the uncertainties(and lower bounds)exhibit periodical oscillations due to correlation dynamics under independent non-Markovian reservoirs.In addition,we compare different entropic uncertainty relations in several special cases and find that discord-tightened entropic uncertainty relations offer in general a better estimate of the uncertainties in play.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10374075 and Natural Science Foundation of Shanxi Province of China under Grant No. 20001009
文摘The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Fhrther it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
基金National Natural Science Foundation of China(60073012)Natural Sceience Foundation of Jiangsu, China(BK2001004)Visiting Scholar Foundation of Key Lab in Wuhan University
文摘Accuracy and roughness, proposed by Pawlak(1982), might draw a conclusion inconsistent with our intuition in some cases. This letter analyzes the limitations in these measures and proposes improved accuracy and roughness measures based on information theory.
文摘We obtain uncertainty and certainty relations of state-independent form for the three Paufi observables with use of the Renyi entropies of order α∈ (0; 1]. It is shown that these entropic bounds are tight in the sense that they are always reached with certain pure states. A new result is the condition for equality in Renyi-entropy uncertainty relations for the Pauli observables. Upper entropic bounds in the pure-state case are also novel. Combining the presented bounds leads to a band, in which the rescaled average Renyi a-entropy ranges for a pure measured state. A width of this band is compared with the Tsallis formulation derived previously.
基金supported by the National Natural Science Foundation of China(Grant Nos.61144006,11201427 and 10901103)the Foundation of China Scholarship Council,the Project Fund of Hunan Provincial Scienceand Technology Department(Grant No.2010FJ3147)the Fund of Hunan Provincial Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology,the Educational Committee of the Hunan Province of China through the Overseas Famous Teachers Programme
文摘The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that quantum entanglement as well as more general notions of correlations,such as quantum discord,can relax or tighten the entropic uncertainty relation in the presence of an ancillary system.We explored the behaviour of entropic uncertainty relations for system of two qubits—one of which subjects to several forms of independent quantum noise,in both Markovian and non-Markovian regimes.The uncertainties and their lower bounds,identified by the entropic uncertainty relations,increase under independent local unital Markovian noisy channels,but they may decrease under non-unital channels.The behaviour of the uncertainties(and lower bounds)exhibit periodical oscillations due to correlation dynamics under independent non-Markovian reservoirs.In addition,we compare different entropic uncertainty relations in several special cases and find that discord-tightened entropic uncertainty relations offer in general a better estimate of the uncertainties in play.