为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚...为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚动轴承故障信号表现为冲击波形的特点和MED降噪对冲击特征敏感的特性,采用MED对故障信号进行降噪处理,同时增强信号中的冲击成分;再结合TEO适合检测信号的瞬时变化,能有效提取故障信号冲击特征的特点,计算降噪信号的Teager能量信号,进行频谱分析提取滚动轴承的故障特征。通过对仿真信号和直升机滚动轴承混合故障信号进行分析,实验结果表明,该方法能有效提取强背景噪声环境中的微弱复合故障特征,具有一定的工程应用价值。展开更多
针对噪声干扰状态下行星齿轮箱故障诊断中的齿轮故障特征提取,提出最小熵解卷积与谱峭度结合(Spectral Kurtosis Method based on Minimum Entropy Deconvolution,MEDSK)的行星齿轮箱齿轮故障特征提取方法。利用MED对原始扭转振动信号...针对噪声干扰状态下行星齿轮箱故障诊断中的齿轮故障特征提取,提出最小熵解卷积与谱峭度结合(Spectral Kurtosis Method based on Minimum Entropy Deconvolution,MEDSK)的行星齿轮箱齿轮故障特征提取方法。利用MED对原始扭转振动信号进行预处理,抑制信号中的噪声干扰,提升行星齿轮箱中被噪声淹没的故障冲击成份。利用谱峭度对预处理后的信号选择最优的带通滤波器参数进行带通滤波,然后通过Hilbert变换进行包络解调,最后将解调出来的低频信号进行频谱分析得到MED-SK方法的包络谱。通过对仿真信号和承受多种载荷状态下采集到的行星齿轮箱输出轴实际行星齿轮故障扭转振动信号进行分析,验证了这种方法能准确地提取行星齿轮故障特征。展开更多
文摘为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚动轴承故障信号表现为冲击波形的特点和MED降噪对冲击特征敏感的特性,采用MED对故障信号进行降噪处理,同时增强信号中的冲击成分;再结合TEO适合检测信号的瞬时变化,能有效提取故障信号冲击特征的特点,计算降噪信号的Teager能量信号,进行频谱分析提取滚动轴承的故障特征。通过对仿真信号和直升机滚动轴承混合故障信号进行分析,实验结果表明,该方法能有效提取强背景噪声环境中的微弱复合故障特征,具有一定的工程应用价值。
文摘针对噪声干扰状态下行星齿轮箱故障诊断中的齿轮故障特征提取,提出最小熵解卷积与谱峭度结合(Spectral Kurtosis Method based on Minimum Entropy Deconvolution,MEDSK)的行星齿轮箱齿轮故障特征提取方法。利用MED对原始扭转振动信号进行预处理,抑制信号中的噪声干扰,提升行星齿轮箱中被噪声淹没的故障冲击成份。利用谱峭度对预处理后的信号选择最优的带通滤波器参数进行带通滤波,然后通过Hilbert变换进行包络解调,最后将解调出来的低频信号进行频谱分析得到MED-SK方法的包络谱。通过对仿真信号和承受多种载荷状态下采集到的行星齿轮箱输出轴实际行星齿轮故障扭转振动信号进行分析,验证了这种方法能准确地提取行星齿轮故障特征。