Some thermodynamic properties of NHk fixation by loess soil in plowing and clay layers are discussed.The. results indicate that the four ion adsorption equations commonly used can describe the properties of NHk fixati...Some thermodynamic properties of NHk fixation by loess soil in plowing and clay layers are discussed.The. results indicate that the four ion adsorption equations commonly used can describe the properties of NHk fixation in these soils under constant temperature. Among the four adsorption equations, the singlesurface Langmuir equation is the best. When the concentration of NH4Cl solution is 10-1 mol below, the Freundlich equation can be used.The changes of apparent standard free energy (△Go), enthalpy (△Ho) and entropy (△So) illustrate that NHk fixation in soil is an endothermic adsorption and spontaneous reaction, and the process can be enhanced by a higher temperature and clay content in soil.The "proper value of NHk fixation by soil (K1×qm) increased with increasing clay content and temperature. The heat of NHk fixation in soil (Qm) confirms the conclusions made in this paper.展开更多
The amounts of chloride ions diffused in four soils of different textures at the same water content under different temperature and at varied time were measured by the diffusion cell method using 36Cl-labelled CaCl2 s...The amounts of chloride ions diffused in four soils of different textures at the same water content under different temperature and at varied time were measured by the diffusion cell method using 36Cl-labelled CaCl2 solution. Five kinetic models were used to fit the dynamic process of the diffusion of chloride ions in the soils. It was found that Elovich equation or power function equation was the best model to describe the process. The pseudothermodynamic parameters, i. e. the net reaction energyl the activation entropy,activation enthalpy and activation free energy of the diffusion, were derived from the absolute reaction-rate theory. The results showed that these parameters decreased in the order of loessal soil > black in soil >lou soil > yellow cinnamon soil, which indicated that the force and the heat-energy barrier to be overcome for diffusion decreased, the diffusion rate increased and the disorder of the soil-solution-ion system due to diffusion decreased successively with the texture becoming heavier in the four soils.展开更多
文摘Some thermodynamic properties of NHk fixation by loess soil in plowing and clay layers are discussed.The. results indicate that the four ion adsorption equations commonly used can describe the properties of NHk fixation in these soils under constant temperature. Among the four adsorption equations, the singlesurface Langmuir equation is the best. When the concentration of NH4Cl solution is 10-1 mol below, the Freundlich equation can be used.The changes of apparent standard free energy (△Go), enthalpy (△Ho) and entropy (△So) illustrate that NHk fixation in soil is an endothermic adsorption and spontaneous reaction, and the process can be enhanced by a higher temperature and clay content in soil.The "proper value of NHk fixation by soil (K1×qm) increased with increasing clay content and temperature. The heat of NHk fixation in soil (Qm) confirms the conclusions made in this paper.
文摘The amounts of chloride ions diffused in four soils of different textures at the same water content under different temperature and at varied time were measured by the diffusion cell method using 36Cl-labelled CaCl2 solution. Five kinetic models were used to fit the dynamic process of the diffusion of chloride ions in the soils. It was found that Elovich equation or power function equation was the best model to describe the process. The pseudothermodynamic parameters, i. e. the net reaction energyl the activation entropy,activation enthalpy and activation free energy of the diffusion, were derived from the absolute reaction-rate theory. The results showed that these parameters decreased in the order of loessal soil > black in soil >lou soil > yellow cinnamon soil, which indicated that the force and the heat-energy barrier to be overcome for diffusion decreased, the diffusion rate increased and the disorder of the soil-solution-ion system due to diffusion decreased successively with the texture becoming heavier in the four soils.