Fuelwood is the main source of the energy in mountainous regions.Hence,annual wood consumption is very high.Information on fuelwood resources,and their extraction and availability is very scanty.Therefore,present stud...Fuelwood is the main source of the energy in mountainous regions.Hence,annual wood consumption is very high.Information on fuelwood resources,and their extraction and availability is very scanty.Therefore,present study was carried out to study the diversity of fuelwood species,annual collection,preference and availability of fuel species in the forests.Thirty four species(25 trees and 9 shrubs) were extracted for fuel by the inhabitants.Total collection and species preference was highest for Picea smithiana,Cedrus deodara,Indigofera heterantha,Pinus wallchiana and Sorbaria tomentosa,respectively.Resource use index indicating use pressure was highest for P.smithiana,C.deodara,I.heterantha and Abies pindrow,respectively.Besides native species,some non-native horticultural and agroforestry species such as Malus pumila,P.domestica,Celtis australis,etc.were also being used as fuel.Preferred species showed their availability in eight forest types whereas,population and regeneration status was poor.Therefore,immediate actions are suggested to sustain current and future demand of fuelwood.The afforestation of degraded,uncultivated and marginal lands through high quality and preferred fuel species might reduce pressure on wild and selective species.展开更多
This study investigates crop residue availability within 100 mile radius of a potential biorefinery in Southeast North Dakota. Due to the lack of market information on biomass residue supply, we conducted farm focus g...This study investigates crop residue availability within 100 mile radius of a potential biorefinery in Southeast North Dakota. Due to the lack of market information on biomass residue supply, we conducted farm focus group survey sessions and empirical field studies to evaluate farmers' willingness to supply crop residues and timeliness of harvesting. Using a GIS (Geographic Information Systems) application, we locate residue supply areas and numerically show that there are enough crop residues to meet the biorefinery's supply needs. Our evidence from farm focus group shows that farmers may not be willing to sell their crop residues because of concerns for labor availability and soil fertility losses. Farmers' decisions to supply crop residues depend on the willingness of a biofuel firm to offer them a contract and ensure price stability. Farmers are unwilling to take any risk in supplying crop residues and they prefer to transfer ownership of residues immediately after harvest and have an external party bale, store and transport the goods. The biofuel firm requires crop residues be collected dry to prevent mold. This will challenge Northern Plains farmers who wait to collect stovers prior to winter.展开更多
Core fueling is plasmas to reach enhanced confinement regime and elevate output fusion power. However it is not easy to do so. Making use of the 2-D Kuteev lentil model, including kinetic effects, we find that existin...Core fueling is plasmas to reach enhanced confinement regime and elevate output fusion power. However it is not easy to do so. Making use of the 2-D Kuteev lentil model, including kinetic effects, we find that existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressureas high as 254 MPa should be applied to a pellet accelerator 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet of radius rpo = 0. 5 cm to a velocity of νp0, 24 × 10^5cm·s^-1 penetrating 100 cm into the ITER plasma core.展开更多
This proposal aims to assess the market introduction of advanced technologies for the production of 2nd generation solid biofuels, specifically technologies for the production of briquettes and pellets from agro-indus...This proposal aims to assess the market introduction of advanced technologies for the production of 2nd generation solid biofuels, specifically technologies for the production of briquettes and pellets from agro-industrial wastes. The development of this project will evaluate the socio-environmental and techno-economical feasibility and use of 2nd generation solid biofuels in the CMR (Campinas Metropolitan Region). The successful introduction of second generation briquettes and pellets to market depends, mainly, on two aspects: logistics in supply chains which generate waste, and the efficiency of production technologies. The study of logistics (supply chain) is based on survey data of the main productive supply chains, analysis, and modeling to optimize the facility location in the network for each case. The evaluation of the efficiency of production technology is provided by testing specially designed waste compacting devices, and comparing these results with the resulting power consumption during the production, in demonstration-scale, of a round of briquettes. The costs and consumption during the demonstration-scale production of briquettes are used for validation and correction of an optimization model. This project was approved in late 2012 with a period of two years for its implementation. Later in 2013, it was decided also to extend its implementation to the Metropolitan Region of Manaus, Amazon. Due to its recent beginning, the results shown here are only preliminary.展开更多
In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depend...In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depends on cell resistance but also on the electrical conductivity of the various applied contact and protective layers. Various layers have been tested under simulated SOFC conditions, and results have shown that the lowest ASR value, about 3 mΩ.cm2, was obtained for an LSM (2) contact layer. A significantly higher resistance was found for the combined contact and protective layer LCC10-Mn3O4, being around 37 mΩ.cm2 Related to the various tests, the total ASR of an F-design stack, developed by Forschungszentrum Jiilich, under ideal conditions can be estimated. In this case the ASR value was calculated as the sum of that of the LCC10-Mn3O4 layer and the formed oxide scale due to oxidation of Crofer22APU. Contacting resistance at the anode side was considered negligible. When differences in the ASR values occurred when compared with that from current-voltage measurements performed with real SOFC stacks, this can be explained by the limited contact area between interconnect and cathode. These results can be used to model the influence of various applied layers and different geometric contact areas on the overall ASR as determined from performance measurements with SOFC stacks.展开更多
Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed con...Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.展开更多
Many studies have indicated that traditional cooking stoves are inefficient and their use leads to the acceleration of deforestation, the decline of land productivity, subsequently triggering climate changes and human...Many studies have indicated that traditional cooking stoves are inefficient and their use leads to the acceleration of deforestation, the decline of land productivity, subsequently triggering climate changes and human health problems. On the other hand, the introduced "improved cooking stoves" also have their own disadvantages. Therefore, the case study was conducted aiming to study the rationale of using traditional stoves and document the innovative biomass energy saving practices of the community. The research studied two pilot areas in rural community with different agro-ecology and farming systems. Moreover, individual and focus group discussions were conducted among women households using transect and random sampling. The f'mdings indicate that use of traditional stoves is dominant practice due to flexibility, simplicity and multi-functionality. Moreover, the biomass fuel use is integral part of the fanning system, socio-cultural framework and habits and customs of local community. The study has documented local innovation practices of biomass energy saving by improving stoves and chimney, combining different crops in food cooking, improving local beer processing, shifting crop-land to woodland. Moreover, the study reveals that the enclosure of communal forests due to the modem extension services is attributed with long distance travel to collect fuel wood, leading to conflicts and declines livelihood diversity of the poor population. Hence, consideration of local initiatives in development of appropriate and sustainable technology is essential.展开更多
To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is ...To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is not economically viable for most countries. However, oil and fossil fuel prices are known to be highly volatile, and the Paris Agreement calls for a reduction in fossil fuel use. Under these circumstances, heat supplied by nuclear power may abruptly return to favor. To prepare for such a scenario, this study will investigate design considerations for a prototypical modem nuclear power plant, the Korean APR1400 (advanced power reactor 1400) (e.g., Shin Kori Units 3, 4, Shin Hanul 1, 2, Barakah Units 1, 2, 3, 4). Nuclear cogeneration can impact balance of plant system and component design for the condensate, feedwater, extraction steam, and heater drain systems. The APR1400 turbine cycle will be reviewed for a parametric range of pressures and flow rates of the steam exported for cogeneration to identify major design challenges.展开更多
In concert with governmental policy for promoting the use of biofuels, the Institute of Nuclear Energy Research (INER) is dedicated to the research and development of technologies for cellulosic ethanol production. ...In concert with governmental policy for promoting the use of biofuels, the Institute of Nuclear Energy Research (INER) is dedicated to the research and development of technologies for cellulosic ethanol production. A pilot plant for cellulosic ethanol production with a capacity of one ton in dry biomass per day was established in 2007 and launched test-run operations for mass production in early 2010. The feedstock is focused on rice straw currently, but is also flexible for sugarcane bagasse and hardwood. The operative experiences and the experimental data will provide valuable information for the evaluation of production cost as well as the foundation for design of a commercial production plant in Taiwan. Additionally, this pilot plant will also serve as an important platform for validation of technologies related to cellulosic ethanol production and biorefinery operations. The biomass-to-ethanol process of this plant is based on the route of biochemical conversions. Developed and developing technologies, such as acid hydrolysis pretreatment, high solid to liquid ratio hydrolysis, in-house cellulase production, xylose fermentation, and the distillation and dehydration processes will be introduced.展开更多
文摘Fuelwood is the main source of the energy in mountainous regions.Hence,annual wood consumption is very high.Information on fuelwood resources,and their extraction and availability is very scanty.Therefore,present study was carried out to study the diversity of fuelwood species,annual collection,preference and availability of fuel species in the forests.Thirty four species(25 trees and 9 shrubs) were extracted for fuel by the inhabitants.Total collection and species preference was highest for Picea smithiana,Cedrus deodara,Indigofera heterantha,Pinus wallchiana and Sorbaria tomentosa,respectively.Resource use index indicating use pressure was highest for P.smithiana,C.deodara,I.heterantha and Abies pindrow,respectively.Besides native species,some non-native horticultural and agroforestry species such as Malus pumila,P.domestica,Celtis australis,etc.were also being used as fuel.Preferred species showed their availability in eight forest types whereas,population and regeneration status was poor.Therefore,immediate actions are suggested to sustain current and future demand of fuelwood.The afforestation of degraded,uncultivated and marginal lands through high quality and preferred fuel species might reduce pressure on wild and selective species.
文摘This study investigates crop residue availability within 100 mile radius of a potential biorefinery in Southeast North Dakota. Due to the lack of market information on biomass residue supply, we conducted farm focus group survey sessions and empirical field studies to evaluate farmers' willingness to supply crop residues and timeliness of harvesting. Using a GIS (Geographic Information Systems) application, we locate residue supply areas and numerically show that there are enough crop residues to meet the biorefinery's supply needs. Our evidence from farm focus group shows that farmers may not be willing to sell their crop residues because of concerns for labor availability and soil fertility losses. Farmers' decisions to supply crop residues depend on the willingness of a biofuel firm to offer them a contract and ensure price stability. Farmers are unwilling to take any risk in supplying crop residues and they prefer to transfer ownership of residues immediately after harvest and have an external party bale, store and transport the goods. The biofuel firm requires crop residues be collected dry to prevent mold. This will challenge Northern Plains farmers who wait to collect stovers prior to winter.
文摘Core fueling is plasmas to reach enhanced confinement regime and elevate output fusion power. However it is not easy to do so. Making use of the 2-D Kuteev lentil model, including kinetic effects, we find that existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressureas high as 254 MPa should be applied to a pellet accelerator 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet of radius rpo = 0. 5 cm to a velocity of νp0, 24 × 10^5cm·s^-1 penetrating 100 cm into the ITER plasma core.
文摘This proposal aims to assess the market introduction of advanced technologies for the production of 2nd generation solid biofuels, specifically technologies for the production of briquettes and pellets from agro-industrial wastes. The development of this project will evaluate the socio-environmental and techno-economical feasibility and use of 2nd generation solid biofuels in the CMR (Campinas Metropolitan Region). The successful introduction of second generation briquettes and pellets to market depends, mainly, on two aspects: logistics in supply chains which generate waste, and the efficiency of production technologies. The study of logistics (supply chain) is based on survey data of the main productive supply chains, analysis, and modeling to optimize the facility location in the network for each case. The evaluation of the efficiency of production technology is provided by testing specially designed waste compacting devices, and comparing these results with the resulting power consumption during the production, in demonstration-scale, of a round of briquettes. The costs and consumption during the demonstration-scale production of briquettes are used for validation and correction of an optimization model. This project was approved in late 2012 with a period of two years for its implementation. Later in 2013, it was decided also to extend its implementation to the Metropolitan Region of Manaus, Amazon. Due to its recent beginning, the results shown here are only preliminary.
文摘In the frame of the ZeuS-Ill project, a model study was started on evaluation the area-specific resistances (ASRs) of various layers being used in SOFC stacks. It is well known that stack performance not only depends on cell resistance but also on the electrical conductivity of the various applied contact and protective layers. Various layers have been tested under simulated SOFC conditions, and results have shown that the lowest ASR value, about 3 mΩ.cm2, was obtained for an LSM (2) contact layer. A significantly higher resistance was found for the combined contact and protective layer LCC10-Mn3O4, being around 37 mΩ.cm2 Related to the various tests, the total ASR of an F-design stack, developed by Forschungszentrum Jiilich, under ideal conditions can be estimated. In this case the ASR value was calculated as the sum of that of the LCC10-Mn3O4 layer and the formed oxide scale due to oxidation of Crofer22APU. Contacting resistance at the anode side was considered negligible. When differences in the ASR values occurred when compared with that from current-voltage measurements performed with real SOFC stacks, this can be explained by the limited contact area between interconnect and cathode. These results can be used to model the influence of various applied layers and different geometric contact areas on the overall ASR as determined from performance measurements with SOFC stacks.
文摘Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.
文摘Many studies have indicated that traditional cooking stoves are inefficient and their use leads to the acceleration of deforestation, the decline of land productivity, subsequently triggering climate changes and human health problems. On the other hand, the introduced "improved cooking stoves" also have their own disadvantages. Therefore, the case study was conducted aiming to study the rationale of using traditional stoves and document the innovative biomass energy saving practices of the community. The research studied two pilot areas in rural community with different agro-ecology and farming systems. Moreover, individual and focus group discussions were conducted among women households using transect and random sampling. The f'mdings indicate that use of traditional stoves is dominant practice due to flexibility, simplicity and multi-functionality. Moreover, the biomass fuel use is integral part of the fanning system, socio-cultural framework and habits and customs of local community. The study has documented local innovation practices of biomass energy saving by improving stoves and chimney, combining different crops in food cooking, improving local beer processing, shifting crop-land to woodland. Moreover, the study reveals that the enclosure of communal forests due to the modem extension services is attributed with long distance travel to collect fuel wood, leading to conflicts and declines livelihood diversity of the poor population. Hence, consideration of local initiatives in development of appropriate and sustainable technology is essential.
文摘To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is not economically viable for most countries. However, oil and fossil fuel prices are known to be highly volatile, and the Paris Agreement calls for a reduction in fossil fuel use. Under these circumstances, heat supplied by nuclear power may abruptly return to favor. To prepare for such a scenario, this study will investigate design considerations for a prototypical modem nuclear power plant, the Korean APR1400 (advanced power reactor 1400) (e.g., Shin Kori Units 3, 4, Shin Hanul 1, 2, Barakah Units 1, 2, 3, 4). Nuclear cogeneration can impact balance of plant system and component design for the condensate, feedwater, extraction steam, and heater drain systems. The APR1400 turbine cycle will be reviewed for a parametric range of pressures and flow rates of the steam exported for cogeneration to identify major design challenges.
文摘In concert with governmental policy for promoting the use of biofuels, the Institute of Nuclear Energy Research (INER) is dedicated to the research and development of technologies for cellulosic ethanol production. A pilot plant for cellulosic ethanol production with a capacity of one ton in dry biomass per day was established in 2007 and launched test-run operations for mass production in early 2010. The feedstock is focused on rice straw currently, but is also flexible for sugarcane bagasse and hardwood. The operative experiences and the experimental data will provide valuable information for the evaluation of production cost as well as the foundation for design of a commercial production plant in Taiwan. Additionally, this pilot plant will also serve as an important platform for validation of technologies related to cellulosic ethanol production and biorefinery operations. The biomass-to-ethanol process of this plant is based on the route of biochemical conversions. Developed and developing technologies, such as acid hydrolysis pretreatment, high solid to liquid ratio hydrolysis, in-house cellulase production, xylose fermentation, and the distillation and dehydration processes will be introduced.