A three-dimensional numerical model verified by previous experimental data is developed to simulate the fluidized bed gasification of refuse derived fuel (RDF). The CaO dechlorination model obtained by the thermal g...A three-dimensional numerical model verified by previous experimental data is developed to simulate the fluidized bed gasification of refuse derived fuel (RDF). The CaO dechlorination model obtained by the thermal gravity analysis (TGA) is coupled to investigate the process of CaO dechlorination. An Eulerian-Eulerian method is adopted to simulate the gas-solid flow and self-developed chemical reaction modules are used to simulate chemical reactions. Flow patterns, gasification results and dechlorination efficiency are obtained by numerical simulation. Meanwhile, simulations are performed to evaluate the effects of Ca/Cl molar ratio and temperature on dechlorination efficiency. The simulation results show that the presence of bubbles in the gasifier lowers the CaO dechlorination efficiency. Increasing the Ca/Cl molar ratio can enhance the dechlorination efficiency. However, with the temperature increasing, the dechlorination efficiency increases initially and then decreases. The optimal Ca/Cl molar ratio is in the range of 3. 0 to 3. 5 and the optimal temperature is 923K.展开更多
Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeod...Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeodrainage pattern and the effect of palaeotopography. The sedimentary facies is the most elementary factor controlling the physical property of reservoirs. The layout and spatial combination model of the sand body and faults are the major influential factors on the occurrence of hydrocarbons. Comparative study on Houzhang and Yanglou Braided Deltas as well as Zhangchang and Gucheng Meandering Deltas suggests that the hydrocarbons distribute primarily in the mouth bar subfacies and secondarily in the distal bar subfacies of the braided delta, while the oil-water and aqueous layers are mainly found in the subaquatic distributary channel. Although the sand body of the meandering delta has excellent stratification and high porosity, the thickness is far less than that of the braided delta. Therefore, the yield of hydrocarbon is relatively low. The mudstone of the delta front subfacies is a kind of source rock with a high content of organic matter. The conducting system for oil/gas migration in the North Slope is a composite one comprising faults and sand- stone reservoirs. A large amount of oil/gas from the deep depression first migrated towards the slope along the sand body which stretches and connects with the source rocks, and then redistributed along the faults in the slope. After the movement reached a standstill, the faults formed the occlusion in the up-dip direction of the sand body, generating a great quantity of fault block hydrocarbon reservoirs in the Noah Slope.展开更多
Based on a three-step kinetic mechanism, a one-dimensional, time dependent, numerical model is presented for the smoldering propagation in a horizontally packed bed of cellulosic material. The kinetic processes includ...Based on a three-step kinetic mechanism, a one-dimensional, time dependent, numerical model is presented for the smoldering propagation in a horizontally packed bed of cellulosic material. The kinetic processes include pyrolysis and oxidation degradation of fuel and oxidation of char. Heat transfer between solid and gas is taken into account, and the diffusion coefficient varies with the temperature. Radiative heat transfer is included by using the diffusion approximation. The effects of airflow velocity and oxygen concentration are simulated on the smoldering velocity and the averaged maximum temperature of smoldering fuel. The results indicate that the spread rate varies linearly with increasing airflow velocity, and the inlet air velocity has little effect on the maximum temperature. The evolutions of gas species and solid compositions are predicted. The effects of frequency factors (A1, A2 and A3) are analyzed. Simulations show that the smoldering spread rate increases with increasing A2 (fuel oxidation), but decreases with A1 (fuel pyrolysis) and A3 (char oxidation).展开更多
With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N20, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory sca...With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N20, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the majority of f-uel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N20. But in labora- tory scale CFB, the conversion of fuel-N to N20 is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in- creasing N20 formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N20 are smaller than laboratory scale CFB.展开更多
A mathematical model for a bubble column slurry reactor is presented for dimethyl ether synthesis from syngas. Methanol synthesis from carbon monoxide and carbon dioxide by hydrogenation and the methanol dehydration a...A mathematical model for a bubble column slurry reactor is presented for dimethyl ether synthesis from syngas. Methanol synthesis from carbon monoxide and carbon dioxide by hydrogenation and the methanol dehydration are considered as independent reactions, in which methanol, dimethyl ether and carbon dioxide are the key components. In this model, the gas phase is considered to be in plug flow and the liquid phase to be in partly back mixing with axial distribution of solid catalyst. The simulation results show that the axial dispersion of solid catalysts, the operational height of the slurry phase in the bubble column slurry reactor, and the reaction results are influenced by the reaction temperature and pressure, which are the basic data for the scale-up of reactor.展开更多
A mathematical model has been developed to describe the agglomeration process in bio-fuel fired fluidized bed combustor. Based on the balance mechanism of the adhesive force caused by liquid bonding between two parti-...A mathematical model has been developed to describe the agglomeration process in bio-fuel fired fluidized bed combustor. Based on the balance mechanism of the adhesive force caused by liquid bonding between two parti- cles and the breaking force induced by bubbles in the fiuidized bed, the model considers modified Urbain model and chemical equilibrium calculations using FactSage modeling. This model prediction accounts for the evolve- ment of the adhesive and breaking forces, and clearly demonstrates that the different composition of ash, the in- creasing liquid phase matter and the fiuidization velocity cause defluidization in fluidized bed. In this model, it is the first time to hypothesize that the bonding stress between two particles is proportional to mass fraction of liq- uid phase and inversely proportional to the diameter of particles and viscosity of liquid phase. The defluidization time calculated by this model shows good agreement with that from the experimental data.展开更多
基金The National Natural Science Foundation of China(No.51476032)
文摘A three-dimensional numerical model verified by previous experimental data is developed to simulate the fluidized bed gasification of refuse derived fuel (RDF). The CaO dechlorination model obtained by the thermal gravity analysis (TGA) is coupled to investigate the process of CaO dechlorination. An Eulerian-Eulerian method is adopted to simulate the gas-solid flow and self-developed chemical reaction modules are used to simulate chemical reactions. Flow patterns, gasification results and dechlorination efficiency are obtained by numerical simulation. Meanwhile, simulations are performed to evaluate the effects of Ca/Cl molar ratio and temperature on dechlorination efficiency. The simulation results show that the presence of bubbles in the gasifier lowers the CaO dechlorination efficiency. Increasing the Ca/Cl molar ratio can enhance the dechlorination efficiency. However, with the temperature increasing, the dechlorination efficiency increases initially and then decreases. The optimal Ca/Cl molar ratio is in the range of 3. 0 to 3. 5 and the optimal temperature is 923K.
文摘Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeodrainage pattern and the effect of palaeotopography. The sedimentary facies is the most elementary factor controlling the physical property of reservoirs. The layout and spatial combination model of the sand body and faults are the major influential factors on the occurrence of hydrocarbons. Comparative study on Houzhang and Yanglou Braided Deltas as well as Zhangchang and Gucheng Meandering Deltas suggests that the hydrocarbons distribute primarily in the mouth bar subfacies and secondarily in the distal bar subfacies of the braided delta, while the oil-water and aqueous layers are mainly found in the subaquatic distributary channel. Although the sand body of the meandering delta has excellent stratification and high porosity, the thickness is far less than that of the braided delta. Therefore, the yield of hydrocarbon is relatively low. The mudstone of the delta front subfacies is a kind of source rock with a high content of organic matter. The conducting system for oil/gas migration in the North Slope is a composite one comprising faults and sand- stone reservoirs. A large amount of oil/gas from the deep depression first migrated towards the slope along the sand body which stretches and connects with the source rocks, and then redistributed along the faults in the slope. After the movement reached a standstill, the faults formed the occlusion in the up-dip direction of the sand body, generating a great quantity of fault block hydrocarbon reservoirs in the Noah Slope.
基金Project supported by the National Natural Science Foundation of China (Grant No.50476073)
文摘Based on a three-step kinetic mechanism, a one-dimensional, time dependent, numerical model is presented for the smoldering propagation in a horizontally packed bed of cellulosic material. The kinetic processes include pyrolysis and oxidation degradation of fuel and oxidation of char. Heat transfer between solid and gas is taken into account, and the diffusion coefficient varies with the temperature. Radiative heat transfer is included by using the diffusion approximation. The effects of airflow velocity and oxygen concentration are simulated on the smoldering velocity and the averaged maximum temperature of smoldering fuel. The results indicate that the spread rate varies linearly with increasing airflow velocity, and the inlet air velocity has little effect on the maximum temperature. The evolutions of gas species and solid compositions are predicted. The effects of frequency factors (A1, A2 and A3) are analyzed. Simulations show that the smoldering spread rate increases with increasing A2 (fuel oxidation), but decreases with A1 (fuel pyrolysis) and A3 (char oxidation).
基金Supported by the National Basic Research Program of China(2009CB219802)
文摘With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N20, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the majority of f-uel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N20. But in labora- tory scale CFB, the conversion of fuel-N to N20 is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in- creasing N20 formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N20 are smaller than laboratory scale CFB.
文摘A mathematical model for a bubble column slurry reactor is presented for dimethyl ether synthesis from syngas. Methanol synthesis from carbon monoxide and carbon dioxide by hydrogenation and the methanol dehydration are considered as independent reactions, in which methanol, dimethyl ether and carbon dioxide are the key components. In this model, the gas phase is considered to be in plug flow and the liquid phase to be in partly back mixing with axial distribution of solid catalyst. The simulation results show that the axial dispersion of solid catalysts, the operational height of the slurry phase in the bubble column slurry reactor, and the reaction results are influenced by the reaction temperature and pressure, which are the basic data for the scale-up of reactor.
基金the support of National Natural Science Foundation of China (Project Code:50706055)
文摘A mathematical model has been developed to describe the agglomeration process in bio-fuel fired fluidized bed combustor. Based on the balance mechanism of the adhesive force caused by liquid bonding between two parti- cles and the breaking force induced by bubbles in the fiuidized bed, the model considers modified Urbain model and chemical equilibrium calculations using FactSage modeling. This model prediction accounts for the evolve- ment of the adhesive and breaking forces, and clearly demonstrates that the different composition of ash, the in- creasing liquid phase matter and the fiuidization velocity cause defluidization in fluidized bed. In this model, it is the first time to hypothesize that the bonding stress between two particles is proportional to mass fraction of liq- uid phase and inversely proportional to the diameter of particles and viscosity of liquid phase. The defluidization time calculated by this model shows good agreement with that from the experimental data.