Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydroly...Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HC1, H3PO4 and C4H404 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121~C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.展开更多
Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum ...Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum bacterial concentration for fermentation to produce high concentration of bio-ethanol, and 2) to determine the optimum incubation time for fermentation to produce high concentration of bio-ethanol. The research had been conducted from June until November 2009 using nipah sap as the substrate and Saceharomyces cerevisiae as a fermentation starter. The experimental design used was a randomized block design (RBD). Factors tested were starter concentration (5%, 7.5%, 10%) and incubation time (2, 4, 6 days). The variables observed were concentration of reducing sugar, total microorganism (CFU/mL), and bio-ethanol production. The results showed that the highest yield of bio-ethanol (8.98%) was produced with 7.5% of starter concentration and 6 days of incubation time.展开更多
Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condi...Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condition of the different reaction time from 12 h to 48 h for the first time. The morphology, phase composition and particle size of the ITO powder were characterized by TEM and XRD. Two significant properties required for ITO samples to become noncarbon support for Pt in PEMFCs including specific surface area and electrical conductivity were studied.展开更多
The inauguration of the North Pole route as an alternate route for transporting cargoes between the Far East and Europe appears to be extremely acceptable by shipping companies owing to the huge saving in fuel consump...The inauguration of the North Pole route as an alternate route for transporting cargoes between the Far East and Europe appears to be extremely acceptable by shipping companies owing to the huge saving in fuel consumption, bunker cost, operating cost, emissions and journey time. This route conversion will not only have an impact on the maritime business activity in the Suez Canal, but also the Egyptian economy in several aspects when the number of vessels passing through the Suez Canal and the Indian Ocean decreases. The aim of this study is to analyze the impact of the opening of the Northern Sea route on maritime sector of the Egyptian economy. The scope of this study is concentrating on the Suez Canal shipping activity by using the statistics that have been received from Suez Canal Authority through a set of direct and indirect interview sessions with authority's experts.展开更多
The design and building of new alternative fuel plants is an increasing necessity to replace old technology and non-renewable fossil fuels. To optimize the performance of these plants and to obtain an economically fea...The design and building of new alternative fuel plants is an increasing necessity to replace old technology and non-renewable fossil fuels. To optimize the performance of these plants and to obtain an economically feasible production of these types of fuels, it is necessary to have a total control of each variable involved in the process of production and how these factors affect the yield of fuel production. In this paper it is proposed a model of a digester to generate gas using a Vensim software designed to generate simulations in dynamic state. This simulation was developed using differential equations to model the behavior at each stage of the process and auxiliary conditions to complement the mathematical description of the model. The main factors in the biogas production are the retention time and the methanogen mortality ratio. For retention time lower than 10 h the process loses effectiveness due to bacterial growth is not completed efficiently, but a high retention time involves a bigger reactor and the yield of production decreases considerably for retention time higher than 40 h. The best yields were obtained for a mortality ratio in methanogen and acidogenic bacteria lower than 0.2 and a retention time of 30 h with a final production of 3.33 L by each kilogram of biomass.展开更多
Fuel rod cladding waterside corrosion is one of the phenomena that limit the life time of nuclear fuel. Corrosion performance depends on the cladding material properties as well as operating conditions during the irra...Fuel rod cladding waterside corrosion is one of the phenomena that limit the life time of nuclear fuel. Corrosion performance depends on the cladding material properties as well as operating conditions during the irradiation of the fuel. As a function of temperature, power history, water chemistry, time, etc., waterside corrosion is of great concern in fuel performance evaluation, especially for high burnup fuels. This paper is dedicated to the study of the waterside corrosion phenomenon using the IFPE database by COPERNIC, which is developed for the analysis of fuel rod behaviors in normal operation and transient conditions. Different models, MATPRO, FRAMATOME and EPRI models, for example, are adopted in the simulations. The results derived from the models are compared and the unconformities are analyzed. Based on the comparative analysis, reasonable models are chosen to simulate certain irradiated fuel rods. Our analyses indicate that potential affecting factors which are not considered in COPERNIC code, such as water chemistry and alloy composition, should be responsible for discrepancies of certain rod predictions.展开更多
The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active ...The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active and durable fuel electrode.Here,we report a phase-transformed CoFe-Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(CoFe-SFM)fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(SFM)from a Sr_(2)Fe_(7/6)Mo_(0.5)Co_(1/3)O_(6)-δ(SFMCo)perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO_(2)conversion in RSOC.The CoFeSFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO_(2)conversion as demonstrated by the distribution of relaxation time(DRT)study and equivalent circuit model fitting analysis.Furthermore,an electrolyte-supported single cell is evaluated in the 2:1 CO-CO_(2)atmosphere at 800℃,which shows a peak power density of 259 mW cm^(-2)for CO oxidation and a current density of-0.453 A cm^(-2)at 1.3 V for CO_(2)reduction,which correspond to 3.079 and3.155 m L min-1cm^(-2)for the CO and CO_(2)conversion rates,respectively.More importantly,the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V.This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO_(2)reversible conversion.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2009AA10Z106)the Major State Basic Research Development Program(No.2011CB200902)+4 种基金the CAS International Innovation Partnership Program:Typical Environmental Process and Effects on Resources in Coastal Zone Areathe National Key Technology Research and Development Program(No.2008BAC49B01)the National Natural Science Foundation of China(Nos.40876082,30870247)Outstanding Young Scholar Fellowship of Shandong Province(No.JQ200914)the Science and Technology Project of Qingdao City(No.09-1-3-59-jch)
文摘Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HC1, H3PO4 and C4H404 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121~C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.
文摘Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum bacterial concentration for fermentation to produce high concentration of bio-ethanol, and 2) to determine the optimum incubation time for fermentation to produce high concentration of bio-ethanol. The research had been conducted from June until November 2009 using nipah sap as the substrate and Saceharomyces cerevisiae as a fermentation starter. The experimental design used was a randomized block design (RBD). Factors tested were starter concentration (5%, 7.5%, 10%) and incubation time (2, 4, 6 days). The variables observed were concentration of reducing sugar, total microorganism (CFU/mL), and bio-ethanol production. The results showed that the highest yield of bio-ethanol (8.98%) was produced with 7.5% of starter concentration and 6 days of incubation time.
文摘Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condition of the different reaction time from 12 h to 48 h for the first time. The morphology, phase composition and particle size of the ITO powder were characterized by TEM and XRD. Two significant properties required for ITO samples to become noncarbon support for Pt in PEMFCs including specific surface area and electrical conductivity were studied.
文摘The inauguration of the North Pole route as an alternate route for transporting cargoes between the Far East and Europe appears to be extremely acceptable by shipping companies owing to the huge saving in fuel consumption, bunker cost, operating cost, emissions and journey time. This route conversion will not only have an impact on the maritime business activity in the Suez Canal, but also the Egyptian economy in several aspects when the number of vessels passing through the Suez Canal and the Indian Ocean decreases. The aim of this study is to analyze the impact of the opening of the Northern Sea route on maritime sector of the Egyptian economy. The scope of this study is concentrating on the Suez Canal shipping activity by using the statistics that have been received from Suez Canal Authority through a set of direct and indirect interview sessions with authority's experts.
文摘The design and building of new alternative fuel plants is an increasing necessity to replace old technology and non-renewable fossil fuels. To optimize the performance of these plants and to obtain an economically feasible production of these types of fuels, it is necessary to have a total control of each variable involved in the process of production and how these factors affect the yield of fuel production. In this paper it is proposed a model of a digester to generate gas using a Vensim software designed to generate simulations in dynamic state. This simulation was developed using differential equations to model the behavior at each stage of the process and auxiliary conditions to complement the mathematical description of the model. The main factors in the biogas production are the retention time and the methanogen mortality ratio. For retention time lower than 10 h the process loses effectiveness due to bacterial growth is not completed efficiently, but a high retention time involves a bigger reactor and the yield of production decreases considerably for retention time higher than 40 h. The best yields were obtained for a mortality ratio in methanogen and acidogenic bacteria lower than 0.2 and a retention time of 30 h with a final production of 3.33 L by each kilogram of biomass.
文摘Fuel rod cladding waterside corrosion is one of the phenomena that limit the life time of nuclear fuel. Corrosion performance depends on the cladding material properties as well as operating conditions during the irradiation of the fuel. As a function of temperature, power history, water chemistry, time, etc., waterside corrosion is of great concern in fuel performance evaluation, especially for high burnup fuels. This paper is dedicated to the study of the waterside corrosion phenomenon using the IFPE database by COPERNIC, which is developed for the analysis of fuel rod behaviors in normal operation and transient conditions. Different models, MATPRO, FRAMATOME and EPRI models, for example, are adopted in the simulations. The results derived from the models are compared and the unconformities are analyzed. Based on the comparative analysis, reasonable models are chosen to simulate certain irradiated fuel rods. Our analyses indicate that potential affecting factors which are not considered in COPERNIC code, such as water chemistry and alloy composition, should be responsible for discrepancies of certain rod predictions.
基金financially supported by the National Natural Science Foundation (52002249,51402093 and 21706162)Guangdong Basic and Applied Basic Research Foundation (2019A1515110025 and 2017A 030313289)+3 种基金the Research Grant for Scientific Platform and Project of Guangdong Provincial Education Office (2019KTSCX151)China Postdoctoral Science Foundation (2020M682872)Shenzhen Government’s Plan of Science and Technology (JCYJ201803005125247308)Technical support from the Instrumental Analysis Center of Shenzhen University (Xili Campus) is also appreciated。
文摘The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active and durable fuel electrode.Here,we report a phase-transformed CoFe-Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(CoFe-SFM)fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(SFM)from a Sr_(2)Fe_(7/6)Mo_(0.5)Co_(1/3)O_(6)-δ(SFMCo)perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO_(2)conversion in RSOC.The CoFeSFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO_(2)conversion as demonstrated by the distribution of relaxation time(DRT)study and equivalent circuit model fitting analysis.Furthermore,an electrolyte-supported single cell is evaluated in the 2:1 CO-CO_(2)atmosphere at 800℃,which shows a peak power density of 259 mW cm^(-2)for CO oxidation and a current density of-0.453 A cm^(-2)at 1.3 V for CO_(2)reduction,which correspond to 3.079 and3.155 m L min-1cm^(-2)for the CO and CO_(2)conversion rates,respectively.More importantly,the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V.This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO_(2)reversible conversion.