Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-...Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.展开更多
The present work studied fuel consumption through experiments on a diesel engine. In order to obtain lower BSFC (brake specific fuel consumption), DME (dimethyl ether) is heated and introduced into air intake, tog...The present work studied fuel consumption through experiments on a diesel engine. In order to obtain lower BSFC (brake specific fuel consumption), DME (dimethyl ether) is heated and introduced into air intake, together with fueling emulsified fuel to diesel engine. Results show that BSFC can decrease about 10% and diesel fuel consumption alone can decrease 18%. High saving rate of BSFC up to 10% is also acquired using ethanol instead of DME. To achieve high saving rate of BSFC, the heating temperature of about 1000 K is needed for DME operation, while the diesel engine exhaust temperature of about 750 K is suitable for ethanol. Hydrogen produced in DME or ethanol pyrolysis and the combustion characters of emulsified fuel are considered as main reasons for the excellent fuel saving. Besides, the technique adopted in the present work is extremely easy to be utilized, and may be firstly adopted on diesel engines for power plants, trains, and ships etc.展开更多
The fabrication of a pyrocarbon coated carbon paper and its application to the gas diffusion lay(GDL) of proton exchange membrane(PEM) fuel cell were described.This carbon paper was fabricated by using conventional ca...The fabrication of a pyrocarbon coated carbon paper and its application to the gas diffusion lay(GDL) of proton exchange membrane(PEM) fuel cell were described.This carbon paper was fabricated by using conventional carbon paper as the precursor,and coating it with pyrocarbon by pyrolyzing propylene via the chemical vapor deposition(CVD) method.For comparison,conventional carbon paper composites were also prepared by using PAN-based carbon fiber felt as the precursor followed by impregnation with resin,molding and heat-treatment.SEM characterization indicates that pyrocarbon is uniformly deposited on the surface of the fiber in the pyrocarbon coated carbon paper and made the fibers of carbon felt bind more tightly.In contrast,there are cracks in matrix and debonding of fibers due to carbonization shrinkage in the conventional carbon paper.Property measurements show that the former has much better conductivity and gas permeability than the latter.In addition,current density-voltage performance tests also reveal that the pyrocarbon coating can improve the properties of carbon paper used for electrode materials of fuel cell.展开更多
One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of usin...One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of using of pellets in the pyrolysis reactor. For the technology of two-stage thermal processing of biomass, developed at the Joint Institute for High Temperatures, the amount of synthesis gas which can be obtained from one kilogram of torrefied pellets is also important. A construction of the pilot torrefaction reactor powered by flue gas is shown. The results of experimental investigations of hydrophobicity of torrefied pellets produced by the reactor and quantity of synthesis gas which can be obtained by two-stage thermal processing of the pellets are presented. It is shown that torrefaction allows simplifying the process of conversion of pellets into synthesis gas without significant reduction in the volume of the gas.展开更多
Waste plastics are one of the biggest environmental concerns the world faces today. Waste plastics exposure to the environment is very hazardous. Over time waste plastics photo-degrade and become very tiny dust partic...Waste plastics are one of the biggest environmental concerns the world faces today. Waste plastics exposure to the environment is very hazardous. Over time waste plastics photo-degrade and become very tiny dust particles. These dust particles contain very harmful compounds including benzene, sulfur, carbon and many others. According to studies, waste plastic pollutions are one of the biggest reasons for the depletion of the ozone layer and contributor of global warming. Many scientists have been trying to figure out how to utilize these waste plastics and convert them into useful energy sources. It is possible to convert waste plastics into energy because they are made from petroleum. Scientists have succeeded in developing many methods including pyrolysis, catalytic cracking, thermal degrading and others. The purpose of this experiment is to convert these environmentally harmful waste materials into useful energy source using simple and viable methods. A particular thermal degradation process was successful in extracting fuel from waste plastics at 370-420 ~C. In this paper we will discuss our performed experiment and provide detailed analysis of the produced fuel. Thorough instrumental analysis of the produced fuel showed very considerable results including high energy contents, low levels of harmful emissions and compatibility with various types of existing appliances.展开更多
The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence o...The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.展开更多
This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the stu...This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the study,the carbonaceous ash-free component of coal is obtained,which is then evaluated as the DCFC fuel and compared with raw coal,active carbon,carbon black,and graphite.The electrolyte-supported SOFC structure is adapted to build the DCFC.The DCFC based on the ash-free coal fuel exhibits good performance with regard to the maximum power density,day-by-day measurements,and durability at continuous run.When the carbon fuels are internally gasified to H2 and CO,the power density is generally much improved,compared to N2 pyrolysis environment.The power generation is most likely related to the concentration of pyrolyzed gases as well as the electrochemical reactivity of the solid carbon.展开更多
基金Project (No. 863-2-1-1-7) supported by the Hi-Tech Research and Development Program (863) of China
文摘Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.
文摘The present work studied fuel consumption through experiments on a diesel engine. In order to obtain lower BSFC (brake specific fuel consumption), DME (dimethyl ether) is heated and introduced into air intake, together with fueling emulsified fuel to diesel engine. Results show that BSFC can decrease about 10% and diesel fuel consumption alone can decrease 18%. High saving rate of BSFC up to 10% is also acquired using ethanol instead of DME. To achieve high saving rate of BSFC, the heating temperature of about 1000 K is needed for DME operation, while the diesel engine exhaust temperature of about 750 K is suitable for ethanol. Hydrogen produced in DME or ethanol pyrolysis and the combustion characters of emulsified fuel are considered as main reasons for the excellent fuel saving. Besides, the technique adopted in the present work is extremely easy to be utilized, and may be firstly adopted on diesel engines for power plants, trains, and ships etc.
基金Project(50772134) supported by the National Natural Science Foundation of ChinaProject(2006CB600901) supported by the National Basic Research Program of China
文摘The fabrication of a pyrocarbon coated carbon paper and its application to the gas diffusion lay(GDL) of proton exchange membrane(PEM) fuel cell were described.This carbon paper was fabricated by using conventional carbon paper as the precursor,and coating it with pyrocarbon by pyrolyzing propylene via the chemical vapor deposition(CVD) method.For comparison,conventional carbon paper composites were also prepared by using PAN-based carbon fiber felt as the precursor followed by impregnation with resin,molding and heat-treatment.SEM characterization indicates that pyrocarbon is uniformly deposited on the surface of the fiber in the pyrocarbon coated carbon paper and made the fibers of carbon felt bind more tightly.In contrast,there are cracks in matrix and debonding of fibers due to carbonization shrinkage in the conventional carbon paper.Property measurements show that the former has much better conductivity and gas permeability than the latter.In addition,current density-voltage performance tests also reveal that the pyrocarbon coating can improve the properties of carbon paper used for electrode materials of fuel cell.
文摘One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of using of pellets in the pyrolysis reactor. For the technology of two-stage thermal processing of biomass, developed at the Joint Institute for High Temperatures, the amount of synthesis gas which can be obtained from one kilogram of torrefied pellets is also important. A construction of the pilot torrefaction reactor powered by flue gas is shown. The results of experimental investigations of hydrophobicity of torrefied pellets produced by the reactor and quantity of synthesis gas which can be obtained by two-stage thermal processing of the pellets are presented. It is shown that torrefaction allows simplifying the process of conversion of pellets into synthesis gas without significant reduction in the volume of the gas.
文摘Waste plastics are one of the biggest environmental concerns the world faces today. Waste plastics exposure to the environment is very hazardous. Over time waste plastics photo-degrade and become very tiny dust particles. These dust particles contain very harmful compounds including benzene, sulfur, carbon and many others. According to studies, waste plastic pollutions are one of the biggest reasons for the depletion of the ozone layer and contributor of global warming. Many scientists have been trying to figure out how to utilize these waste plastics and convert them into useful energy sources. It is possible to convert waste plastics into energy because they are made from petroleum. Scientists have succeeded in developing many methods including pyrolysis, catalytic cracking, thermal degrading and others. The purpose of this experiment is to convert these environmentally harmful waste materials into useful energy source using simple and viable methods. A particular thermal degradation process was successful in extracting fuel from waste plastics at 370-420 ~C. In this paper we will discuss our performed experiment and provide detailed analysis of the produced fuel. Thorough instrumental analysis of the produced fuel showed very considerable results including high energy contents, low levels of harmful emissions and compatibility with various types of existing appliances.
文摘The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.
基金supported by the New&Renewable Energy Development Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant Funded by the Korean Government’s Ministry of Knowledge Economy(20113020030010)
文摘This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the study,the carbonaceous ash-free component of coal is obtained,which is then evaluated as the DCFC fuel and compared with raw coal,active carbon,carbon black,and graphite.The electrolyte-supported SOFC structure is adapted to build the DCFC.The DCFC based on the ash-free coal fuel exhibits good performance with regard to the maximum power density,day-by-day measurements,and durability at continuous run.When the carbon fuels are internally gasified to H2 and CO,the power density is generally much improved,compared to N2 pyrolysis environment.The power generation is most likely related to the concentration of pyrolyzed gases as well as the electrochemical reactivity of the solid carbon.