For preventing and extinguishing the spontaneous combustion of coal seam, based on the importance for sealing air leakage channels in roadway, developed a material of light-paste for coalmine, and research its ingredi...For preventing and extinguishing the spontaneous combustion of coal seam, based on the importance for sealing air leakage channels in roadway, developed a material of light-paste for coalmine, and research its ingredient, proportion and performance. The result indicates that the component ratio of the material is which PB exciting agent is 20%, complex reinforcing agent is 2%, complex expansion agent is 1%, and A-material is 77%. The performances of compressive strength, swelling ratio and expansion time are optimum. The light-paste material can effectively seal air leakage channels for preventing and extinguishing the spontaneous combustion of coal seam in coalmine.展开更多
This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the stu...This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the study,the carbonaceous ash-free component of coal is obtained,which is then evaluated as the DCFC fuel and compared with raw coal,active carbon,carbon black,and graphite.The electrolyte-supported SOFC structure is adapted to build the DCFC.The DCFC based on the ash-free coal fuel exhibits good performance with regard to the maximum power density,day-by-day measurements,and durability at continuous run.When the carbon fuels are internally gasified to H2 and CO,the power density is generally much improved,compared to N2 pyrolysis environment.The power generation is most likely related to the concentration of pyrolyzed gases as well as the electrochemical reactivity of the solid carbon.展开更多
With life cycle assessment(LCA) methodology,a life cycle model of coal-based vehicle fuels(CBVFs) including coal-based dimethyl ether(CBDME) and coal-based diesel(CBD) is established.Their primary energy consumption(P...With life cycle assessment(LCA) methodology,a life cycle model of coal-based vehicle fuels(CBVFs) including coal-based dimethyl ether(CBDME) and coal-based diesel(CBD) is established.Their primary energy consumption(PEC) and global warming potential(GWP) from well to wheel including feedstock extraction,fuel production,fuel consumption in vehicle and energy transportation are calculated and compared.Results show that the life cycle PEC and GWP of CBD pathway are 1.17 and 1.34 times as CBDME pathway.Based on the above results,CBDME will become a choice with great potential to replace conventional petroleum-based diesel (CPBD) in China.展开更多
基金Supported by the National Natural Science Foundation of China (1097178) the Project of Creative Team by the Mimstry of Education of China (IRT0856) the Natural Science Foundation of the Education Department of Shaanxi Province (09JK590)
文摘For preventing and extinguishing the spontaneous combustion of coal seam, based on the importance for sealing air leakage channels in roadway, developed a material of light-paste for coalmine, and research its ingredient, proportion and performance. The result indicates that the component ratio of the material is which PB exciting agent is 20%, complex reinforcing agent is 2%, complex expansion agent is 1%, and A-material is 77%. The performances of compressive strength, swelling ratio and expansion time are optimum. The light-paste material can effectively seal air leakage channels for preventing and extinguishing the spontaneous combustion of coal seam in coalmine.
基金supported by the New&Renewable Energy Development Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant Funded by the Korean Government’s Ministry of Knowledge Economy(20113020030010)
文摘This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the study,the carbonaceous ash-free component of coal is obtained,which is then evaluated as the DCFC fuel and compared with raw coal,active carbon,carbon black,and graphite.The electrolyte-supported SOFC structure is adapted to build the DCFC.The DCFC based on the ash-free coal fuel exhibits good performance with regard to the maximum power density,day-by-day measurements,and durability at continuous run.When the carbon fuels are internally gasified to H2 and CO,the power density is generally much improved,compared to N2 pyrolysis environment.The power generation is most likely related to the concentration of pyrolyzed gases as well as the electrochemical reactivity of the solid carbon.
文摘With life cycle assessment(LCA) methodology,a life cycle model of coal-based vehicle fuels(CBVFs) including coal-based dimethyl ether(CBDME) and coal-based diesel(CBD) is established.Their primary energy consumption(PEC) and global warming potential(GWP) from well to wheel including feedstock extraction,fuel production,fuel consumption in vehicle and energy transportation are calculated and compared.Results show that the life cycle PEC and GWP of CBD pathway are 1.17 and 1.34 times as CBDME pathway.Based on the above results,CBDME will become a choice with great potential to replace conventional petroleum-based diesel (CPBD) in China.