采用两步法合成了1-磺酸丁基-3甲基咪唑硫酸氢盐([SO_3H-Bmim]HSO_4)酸性离子液体,对其红外光谱结构和电导率进行表征;同时采用不锈钢材料制作了燃料电池的壳体,并制备了阳极和阴极材料,与[SO_3H-Bmim]HSO_4电解质一起组装成燃料单电池...采用两步法合成了1-磺酸丁基-3甲基咪唑硫酸氢盐([SO_3H-Bmim]HSO_4)酸性离子液体,对其红外光谱结构和电导率进行表征;同时采用不锈钢材料制作了燃料电池的壳体,并制备了阳极和阴极材料,与[SO_3H-Bmim]HSO_4电解质一起组装成燃料单电池。以甲醇为燃料、空气为氧源在80℃采用伏安法测定了燃料电池的性能,其功率密度达到0.19 m W·cm^(-2),有望为甲醇燃料电池实际利用开辟新途径。展开更多
The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely d...The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely decreases after in situ exposure to CO2, which is ascribed to carbonate formation on the material surface. The detrimental effect of CO2 starts at a low temperature of 375 ℃ and concentration as low as 1%, and becomes more pro- nounced at higher temperatures. Degradation of the surface exchange kinetics is associated with a rapid loss of oxygen permeation performance of BSCF in CO2.展开更多
This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates...This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation used MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichiometric flow rate,are tested to optimize micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75 mW·cm-1 when the fuel cell is operated at ambient condition with humidified,heated fuel.展开更多
The fabrication of a pyrocarbon coated carbon paper and its application to the gas diffusion lay(GDL) of proton exchange membrane(PEM) fuel cell were described.This carbon paper was fabricated by using conventional ca...The fabrication of a pyrocarbon coated carbon paper and its application to the gas diffusion lay(GDL) of proton exchange membrane(PEM) fuel cell were described.This carbon paper was fabricated by using conventional carbon paper as the precursor,and coating it with pyrocarbon by pyrolyzing propylene via the chemical vapor deposition(CVD) method.For comparison,conventional carbon paper composites were also prepared by using PAN-based carbon fiber felt as the precursor followed by impregnation with resin,molding and heat-treatment.SEM characterization indicates that pyrocarbon is uniformly deposited on the surface of the fiber in the pyrocarbon coated carbon paper and made the fibers of carbon felt bind more tightly.In contrast,there are cracks in matrix and debonding of fibers due to carbonization shrinkage in the conventional carbon paper.Property measurements show that the former has much better conductivity and gas permeability than the latter.In addition,current density-voltage performance tests also reveal that the pyrocarbon coating can improve the properties of carbon paper used for electrode materials of fuel cell.展开更多
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), ...An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.展开更多
Based on use of multi-dimensional models,this investigation simulates the performance of a proton exchange membrane fuel cell by varying the channel pattern.In the one-dimensional model,the porosity of the gas diffusi...Based on use of multi-dimensional models,this investigation simulates the performance of a proton exchange membrane fuel cell by varying the channel pattern.In the one-dimensional model,the porosity of the gas diffusion layer is 0.3.The model reveals the water vapor distribution of the fuel cell and demonstrates that the amount of water vapor increases linearly with the reduction reaction adjacent to the gas channel and the gas diffusion layer.Secondly,four novel tapered gas channels are simulated by a two-dimensional model.The model considers the distributions of oxygen,the pressure drop,the amount of water vapor distribution and the polarization curves.The results indicate that as the channel depth decreases,the oxygen in the tapered gas channel can be accel-erated and forced into the gas diffusion layer to improve the cell performance.The three-dimensional model is employed to simulate the phenomenon associated with four novel tapered gas channels.The results also show that the best performance is realized in the least tapered gas channel.Finally,an experimentally determined mechanism is found to be consistent with the results of the simulation.展开更多
文摘采用两步法合成了1-磺酸丁基-3甲基咪唑硫酸氢盐([SO_3H-Bmim]HSO_4)酸性离子液体,对其红外光谱结构和电导率进行表征;同时采用不锈钢材料制作了燃料电池的壳体,并制备了阳极和阴极材料,与[SO_3H-Bmim]HSO_4电解质一起组装成燃料单电池。以甲醇为燃料、空气为氧源在80℃采用伏安法测定了燃料电池的性能,其功率密度达到0.19 m W·cm^(-2),有望为甲醇燃料电池实际利用开辟新途径。
基金This work was supported by the National Natural Science Foundation of China (No.U1432108), the Fundamental Research Funds for the Central Universi- ties (No.XDJK2015C002 and No.WK2320000021), Provincial Natural Science Foundation (No.1408085ME85), Scientific Research Founda- tion for the Returned Overseas Chinese Scholars, State Education Ministry (No.WF2320000005), and the Opening Project of CAS Key Laboratory of Materials for Energy Conversion (No.KF2014003). Professor Henny J. M. Bouwmeester of University at Twente is deeply appreciated for fruitful discussions.
文摘The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely decreases after in situ exposure to CO2, which is ascribed to carbonate formation on the material surface. The detrimental effect of CO2 starts at a low temperature of 375 ℃ and concentration as low as 1%, and becomes more pro- nounced at higher temperatures. Degradation of the surface exchange kinetics is associated with a rapid loss of oxygen permeation performance of BSCF in CO2.
基金Supported by the National Science Council (NSC 97-2221-E-009-067)
文摘This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation used MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichiometric flow rate,are tested to optimize micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75 mW·cm-1 when the fuel cell is operated at ambient condition with humidified,heated fuel.
基金Project(50772134) supported by the National Natural Science Foundation of ChinaProject(2006CB600901) supported by the National Basic Research Program of China
文摘The fabrication of a pyrocarbon coated carbon paper and its application to the gas diffusion lay(GDL) of proton exchange membrane(PEM) fuel cell were described.This carbon paper was fabricated by using conventional carbon paper as the precursor,and coating it with pyrocarbon by pyrolyzing propylene via the chemical vapor deposition(CVD) method.For comparison,conventional carbon paper composites were also prepared by using PAN-based carbon fiber felt as the precursor followed by impregnation with resin,molding and heat-treatment.SEM characterization indicates that pyrocarbon is uniformly deposited on the surface of the fiber in the pyrocarbon coated carbon paper and made the fibers of carbon felt bind more tightly.In contrast,there are cracks in matrix and debonding of fibers due to carbonization shrinkage in the conventional carbon paper.Property measurements show that the former has much better conductivity and gas permeability than the latter.In addition,current density-voltage performance tests also reveal that the pyrocarbon coating can improve the properties of carbon paper used for electrode materials of fuel cell.
文摘An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.
基金Supported by the National Science Council (NSC 97-222-E-009-067)
文摘Based on use of multi-dimensional models,this investigation simulates the performance of a proton exchange membrane fuel cell by varying the channel pattern.In the one-dimensional model,the porosity of the gas diffusion layer is 0.3.The model reveals the water vapor distribution of the fuel cell and demonstrates that the amount of water vapor increases linearly with the reduction reaction adjacent to the gas channel and the gas diffusion layer.Secondly,four novel tapered gas channels are simulated by a two-dimensional model.The model considers the distributions of oxygen,the pressure drop,the amount of water vapor distribution and the polarization curves.The results indicate that as the channel depth decreases,the oxygen in the tapered gas channel can be accel-erated and forced into the gas diffusion layer to improve the cell performance.The three-dimensional model is employed to simulate the phenomenon associated with four novel tapered gas channels.The results also show that the best performance is realized in the least tapered gas channel.Finally,an experimentally determined mechanism is found to be consistent with the results of the simulation.