Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must be maintained at ideal leve...Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must be maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.展开更多
This paper presents an application of iterative learning control (ILC) technique to the voltage control of solid oxide fuel cell (SOFC) stack. To meet the demands of the control system design, an autoregressive model ...This paper presents an application of iterative learning control (ILC) technique to the voltage control of solid oxide fuel cell (SOFC) stack. To meet the demands of the control system design, an autoregressive model with exogenous input (ARX) is established. Firstly, by regulating the variation of the hydrogen flow rate proportional to that of the current, the fuel utilization of the SOFC is kept within its admissible range. Then, based on the ARX model, three kinds of ILC controllers, i.e. P-, PI- and PD-type are designed to keep the voltage at a desired level. Simulation results demonstrate the potential of the ARX model applied to the control of the SOFC, and prove the excellence of the ILC controllers for the voltage control of the SOFC.展开更多
Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engi...Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.展开更多
基金Project (No. 2002AA517020) supported by the Hi-Tech Research and Development Program (863) of China
文摘Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must be maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.
基金Project (No. 2006AA05Z148) supported by the Hi-Tech Research and Development Program (863) of China
文摘This paper presents an application of iterative learning control (ILC) technique to the voltage control of solid oxide fuel cell (SOFC) stack. To meet the demands of the control system design, an autoregressive model with exogenous input (ARX) is established. Firstly, by regulating the variation of the hydrogen flow rate proportional to that of the current, the fuel utilization of the SOFC is kept within its admissible range. Then, based on the ARX model, three kinds of ILC controllers, i.e. P-, PI- and PD-type are designed to keep the voltage at a desired level. Simulation results demonstrate the potential of the ARX model applied to the control of the SOFC, and prove the excellence of the ILC controllers for the voltage control of the SOFC.
基金Supported by National Natural Science Foundation and GM Fund (No.50322261).
文摘Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.