This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as th...This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given.展开更多
To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as hea...To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.展开更多
In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat ...In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle.展开更多
A new expansion cycle scheme of the scramjet engine system including a hydrocarbon-fuel-based(kerosene)regenerative cooling system and supercritical/cracking kerosene-based turbo-pump was proposed in this paper.In thi...A new expansion cycle scheme of the scramjet engine system including a hydrocarbon-fuel-based(kerosene)regenerative cooling system and supercritical/cracking kerosene-based turbo-pump was proposed in this paper.In this cycle scbeme,the supercritical/cracking kerosene with high pressure and high temperature is formed through the cooling channel.And then,in order to make better use of the high energy of the supercritical/cracking fuel,the supercritical/cracking kerosene fuel was used to drive the turbo-pump to obtain a high pressure of the cold kerosene fuel at the entrance of the cooling channel.In the end,the supercritical/cracking kerosene from the turbine exit is injected into the scramjet combustor.Such supercritical/cracking kerosene fuel can decrease the fuel-air mixing length and increase the combustion efficiency,due to the gas state and low molecular weight of the cracking fuel.In order to ignite the cold kerosene in the start-up stage,the ethylene-assisted ignition subsystem was applied.In the present paper,operating modes and characteristics of the expansion cycle system are first described.And then,the overall design of the system and the characterisitics of the start-up process are analyzed numerically to investigate effects of the system parameters on the scramjet start-up performance.The results show that the expansion cycle system proposed in this paper can work well under typical conditions.The research work in this paper can help to make a solid foundation for the research on the coupling characteristics between the dynamics and thermodynamics of the scramjet expansion cycle system.展开更多
The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.B...The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.展开更多
文摘This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given.
基金Project(2011CB707201)supported by the National Basic Research Program of ChinaProject(51376057)supported by the National Natural Science Foundation of China
文摘To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51076035)
文摘In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle.
基金National Natural Science Foundation of China(No.11272344)
文摘A new expansion cycle scheme of the scramjet engine system including a hydrocarbon-fuel-based(kerosene)regenerative cooling system and supercritical/cracking kerosene-based turbo-pump was proposed in this paper.In this cycle scbeme,the supercritical/cracking kerosene with high pressure and high temperature is formed through the cooling channel.And then,in order to make better use of the high energy of the supercritical/cracking fuel,the supercritical/cracking kerosene fuel was used to drive the turbo-pump to obtain a high pressure of the cold kerosene fuel at the entrance of the cooling channel.In the end,the supercritical/cracking kerosene from the turbine exit is injected into the scramjet combustor.Such supercritical/cracking kerosene fuel can decrease the fuel-air mixing length and increase the combustion efficiency,due to the gas state and low molecular weight of the cracking fuel.In order to ignite the cold kerosene in the start-up stage,the ethylene-assisted ignition subsystem was applied.In the present paper,operating modes and characteristics of the expansion cycle system are first described.And then,the overall design of the system and the characterisitics of the start-up process are analyzed numerically to investigate effects of the system parameters on the scramjet start-up performance.The results show that the expansion cycle system proposed in this paper can work well under typical conditions.The research work in this paper can help to make a solid foundation for the research on the coupling characteristics between the dynamics and thermodynamics of the scramjet expansion cycle system.
文摘The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.