本文论述了用于极高可靠性供电要求的场合如芯片工厂的配电架构改良,单独内燃机驱动的柴油发电机组(下文简称柴发)作为后备电源进行供电保障优化为结合储能以及不间断电源(Uninterrupted Power Supply,下文简称UPS)相组合的供电保障,UP...本文论述了用于极高可靠性供电要求的场合如芯片工厂的配电架构改良,单独内燃机驱动的柴油发电机组(下文简称柴发)作为后备电源进行供电保障优化为结合储能以及不间断电源(Uninterrupted Power Supply,下文简称UPS)相组合的供电保障,UPS的接线拓扑分析以及采用预充磁装置对优化的拓扑进行进一步改良。展开更多
Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- e...Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process.展开更多
This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP...This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP units by using the probe insertion method. There is a tendency to decrease energy efficiency compared to a high loading factor. GHP operation was almost all part load operation. This on-site evaluation indicates a clear difference between conventional and improved GHP.展开更多
文摘本文论述了用于极高可靠性供电要求的场合如芯片工厂的配电架构改良,单独内燃机驱动的柴油发电机组(下文简称柴发)作为后备电源进行供电保障优化为结合储能以及不间断电源(Uninterrupted Power Supply,下文简称UPS)相组合的供电保障,UPS的接线拓扑分析以及采用预充磁装置对优化的拓扑进行进一步改良。
基金Supported by projects of National Science Foundation of China(No.41327804)the Geological Survey of China(No.3R212W324424)
文摘Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process.
文摘This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP units by using the probe insertion method. There is a tendency to decrease energy efficiency compared to a high loading factor. GHP operation was almost all part load operation. This on-site evaluation indicates a clear difference between conventional and improved GHP.