An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the no...An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles.展开更多
A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-...A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.展开更多
In this study, a coal gasification model is developed based on nine simultaneous reactions. For given gasification temperature and pressure, the air/fuel and water vapor/fuel ratio are optimized for maximum H2/CO rati...In this study, a coal gasification model is developed based on nine simultaneous reactions. For given gasification temperature and pressure, the air/fuel and water vapor/fuel ratio are optimized for maximum H2/CO ratio by parametric study. Furthermore, the cold gas efficiency and higher heating value of the synthesis gas produced are computed for each case. Optimum locations of investigated parameters are also searched for maximizing cold gas efficiency and higher heating value of the synthesis gas.展开更多
We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced c...We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.展开更多
The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for ...The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.展开更多
This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated ...This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated by using the high shear mixing and ultrasonication methods. They are then characterised for their size, surface charge,thermal and rheological properties and tested for their convective heat transfer behaviour. Mathematical modelling is performed to simulate the convective heat transfer of nanofluids using a single phase flow model and considering nanofluids as both Newtonian and non-Newtonian fluid. Both experiments and mathematical modelling show that nanofluids can substantially enhance the convective heat transfer. Analyses of the results suggest that the non-Newtonian character of nanofluids influences the overall enhancement, especially for nanofluids with an obvious non-Newtonian character.展开更多
As a result of the development of wind farms,the gas- steam blocks,which shall quickly ensure energy supply in case the wind velocity is too low,are introduced to the energy system.To shorten the start-up time of the ...As a result of the development of wind farms,the gas- steam blocks,which shall quickly ensure energy supply in case the wind velocity is too low,are introduced to the energy system.To shorten the start-up time of the gas-steam and conventional blocks,the structure of the basic components of the blocks are changed,e.g.by reducing the diameter of the boiler,the thickness of its wall is also reduced.The attempts were also made to revise the currently binding TRD 301 regulations,replacing them by the EN 12952-3 European Standard,to reduce the allowable heating and cooling rates of thick walled boiler components.The basic assumption,on which the boiler regulations allowing to calculate the allowable temperature change rates of pressure components were based,was the quasi- steady state of the temperature field in the simple shaped component,such as a slab,cylindrical or spherical wall.展开更多
基金Supported by National Natural Science Foundation of China (No. 50376044)
文摘An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles.
文摘A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.
文摘In this study, a coal gasification model is developed based on nine simultaneous reactions. For given gasification temperature and pressure, the air/fuel and water vapor/fuel ratio are optimized for maximum H2/CO ratio by parametric study. Furthermore, the cold gas efficiency and higher heating value of the synthesis gas produced are computed for each case. Optimum locations of investigated parameters are also searched for maximizing cold gas efficiency and higher heating value of the synthesis gas.
文摘We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.
文摘The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.
基金supported by Chinese Heilongjiang Postdoctoral FoundationChinese Heilongjiang Postdoctoral Science Funding No.LBH-Q07036+1 种基金the Science Creative Foundation for Distinguished Young Scholars in Harbin (Grant No. 2008RFLG005)Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology No.HIT.NSRIF. 2008.43.
文摘This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated by using the high shear mixing and ultrasonication methods. They are then characterised for their size, surface charge,thermal and rheological properties and tested for their convective heat transfer behaviour. Mathematical modelling is performed to simulate the convective heat transfer of nanofluids using a single phase flow model and considering nanofluids as both Newtonian and non-Newtonian fluid. Both experiments and mathematical modelling show that nanofluids can substantially enhance the convective heat transfer. Analyses of the results suggest that the non-Newtonian character of nanofluids influences the overall enhancement, especially for nanofluids with an obvious non-Newtonian character.
文摘As a result of the development of wind farms,the gas- steam blocks,which shall quickly ensure energy supply in case the wind velocity is too low,are introduced to the energy system.To shorten the start-up time of the gas-steam and conventional blocks,the structure of the basic components of the blocks are changed,e.g.by reducing the diameter of the boiler,the thickness of its wall is also reduced.The attempts were also made to revise the currently binding TRD 301 regulations,replacing them by the EN 12952-3 European Standard,to reduce the allowable heating and cooling rates of thick walled boiler components.The basic assumption,on which the boiler regulations allowing to calculate the allowable temperature change rates of pressure components were based,was the quasi- steady state of the temperature field in the simple shaped component,such as a slab,cylindrical or spherical wall.