Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption o...Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.展开更多
Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]p...Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.展开更多
Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads an...Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
This paper discusses the evolution regularity and the absorption characters of sulfide for bituminous briquette burned in a horizontal burning fornace. The evolution rate of sulphur is affected by some factors, such a...This paper discusses the evolution regularity and the absorption characters of sulfide for bituminous briquette burned in a horizontal burning fornace. The evolution rate of sulphur is affected by some factors, such as the sulphur content in the burning coal, burning time and the mean excess air coefficient in the furnace. With processing the experimental result, the calculation related expression has been obtained to predict the evolution rate of sulfide. The sulphur absorption efficiency of briquette is affected by tbe factors such as the character of the sulphur sorbent, the type of the coal and the operating parameters. By means of appropriately adjusting the calciumsulphur mole ratio, the mean excess air coefficient and the time-interval between pushing two layer briquettes, a high sulphur absorption efficiency (>74% ) can be obtained.展开更多
New researches on serious public health problems such as respiratory disease, heart attacks, and premature deaths, show the threat of air and environmental pollution on human's health. Exhausting greenhouse gases for...New researches on serious public health problems such as respiratory disease, heart attacks, and premature deaths, show the threat of air and environmental pollution on human's health. Exhausting greenhouse gases for electrical energy production in fossil fueled power plants is one of the major reasons of environmental pollutions. Increasing energy demand has made global concerns about the environmental pollutions of fossil power plants. In this article, fossil power plant productive pollutants such as Sulfur Dioxide, Mercury, and Carbon Dioxide, are investigated. On the other hand, nuclear power plant and its produced waste are discussed as the future power generation source. In this article, fossil and nuclear power plants are compared as power sources, pollutants, and their environmental effects. First, investigations are made on fossil power plants and their effects on environment and climate changes. On the other hand, nuclear power plants are discussed as a possible replacement for fossil power plants. In this part, effects of radiation on human health and environment like important nuclear accidents are investigated. This paper summarizes several types of power plants and it is deduced that the nuclear power plant is more clean energy producer in comparison to other power plants.展开更多
Rising fuel prices, increasing emission levels and impending environmental regulations made shipping industry to find an alternate for internal combustion engine in 21st century. Fuel cell is a sustainable, emerging t...Rising fuel prices, increasing emission levels and impending environmental regulations made shipping industry to find an alternate for internal combustion engine in 21st century. Fuel cell is a sustainable, emerging technology with negligible pollution. More significantly for a research ship, emission levels need to be substantially low to have quality measurements. A feasibility study is carried-out First time in the world, to drive an ice class multi-disciplinary ORV (Oceanography Research Vessel) Sagarnidbi, using hydrogen powered fuel cell. Sagamidhi is equipped with special equipments viz., Deep Sea winch, specially designed cranes for Launching and retrieval of ROV (Remotely Operable Vehicle), DSMC (Deep Sea Mining Crawler), Tsunami systems, manned/unmanned submersible and ACS (Autonomous Coring System) and other facilities that support research in Indian, International and Antarctic waters. Beside this, the propulsion system along with DP (Dynamic Positioning), centralized air conditioning and special equipments require enormous electrical power. The combustion of diesel oil in an engine, that coupled with an alternator generates electrical power required, along with NOx (Nitrous Oxides), SOx (Sulphur Oxides) and PM (Particulate Matter) emissions. Shipping industry is the fourth largest contributor to air pollution and carbon emissions, particularly in coastal areas, and the growth rate makes the problem even more critical. Stringent international air pollution regulation and increasing fuel price paves the way for an alternative "green emission technology". Various fuel cells were analyzed with different combination of fuel, electrolyte and electrodes. From the analysis, it has been found that SOFC (Solid Oxide Fuel Cell) is most suitable for the present scenario. A fuel cell designed with hydrogen as fuel, zirconium oxides stabilized with yttrium oxide as electrolyte and zirconium electrodes is used for 1.5 MW power output and 0.5 MW through regenerator. Volume required for storage of hydrogen is in line with volume of fuel and a high standard safety measures were taken using sensors. The present system saves 3000 MT/annum of diesel oil costing 3,000,000 USD approximately.展开更多
文摘Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.
文摘Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.
基金Projects(51776016,51606006) supported by the National Natural Science Foundation of ChinaProjects(3172025,3182030) supported by Beijing Natural Science Foundation,China+4 种基金Project(2017YFB0103401) supported by National Key Research and Development ProgramProject(NELMS2017A10) funded by the National Engineering Laboratory for Mobile Source Emission Control Technology,ChinaProject(2018RC017) supported by the Talents Foundation of Beijing Jiaotong University,ChinaProject(DE-EE0006864) supported by the Department of EnergyProject(201507090044) supported by China Scholarship Council
文摘Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘This paper discusses the evolution regularity and the absorption characters of sulfide for bituminous briquette burned in a horizontal burning fornace. The evolution rate of sulphur is affected by some factors, such as the sulphur content in the burning coal, burning time and the mean excess air coefficient in the furnace. With processing the experimental result, the calculation related expression has been obtained to predict the evolution rate of sulfide. The sulphur absorption efficiency of briquette is affected by tbe factors such as the character of the sulphur sorbent, the type of the coal and the operating parameters. By means of appropriately adjusting the calciumsulphur mole ratio, the mean excess air coefficient and the time-interval between pushing two layer briquettes, a high sulphur absorption efficiency (>74% ) can be obtained.
文摘New researches on serious public health problems such as respiratory disease, heart attacks, and premature deaths, show the threat of air and environmental pollution on human's health. Exhausting greenhouse gases for electrical energy production in fossil fueled power plants is one of the major reasons of environmental pollutions. Increasing energy demand has made global concerns about the environmental pollutions of fossil power plants. In this article, fossil power plant productive pollutants such as Sulfur Dioxide, Mercury, and Carbon Dioxide, are investigated. On the other hand, nuclear power plant and its produced waste are discussed as the future power generation source. In this article, fossil and nuclear power plants are compared as power sources, pollutants, and their environmental effects. First, investigations are made on fossil power plants and their effects on environment and climate changes. On the other hand, nuclear power plants are discussed as a possible replacement for fossil power plants. In this part, effects of radiation on human health and environment like important nuclear accidents are investigated. This paper summarizes several types of power plants and it is deduced that the nuclear power plant is more clean energy producer in comparison to other power plants.
文摘Rising fuel prices, increasing emission levels and impending environmental regulations made shipping industry to find an alternate for internal combustion engine in 21st century. Fuel cell is a sustainable, emerging technology with negligible pollution. More significantly for a research ship, emission levels need to be substantially low to have quality measurements. A feasibility study is carried-out First time in the world, to drive an ice class multi-disciplinary ORV (Oceanography Research Vessel) Sagarnidbi, using hydrogen powered fuel cell. Sagamidhi is equipped with special equipments viz., Deep Sea winch, specially designed cranes for Launching and retrieval of ROV (Remotely Operable Vehicle), DSMC (Deep Sea Mining Crawler), Tsunami systems, manned/unmanned submersible and ACS (Autonomous Coring System) and other facilities that support research in Indian, International and Antarctic waters. Beside this, the propulsion system along with DP (Dynamic Positioning), centralized air conditioning and special equipments require enormous electrical power. The combustion of diesel oil in an engine, that coupled with an alternator generates electrical power required, along with NOx (Nitrous Oxides), SOx (Sulphur Oxides) and PM (Particulate Matter) emissions. Shipping industry is the fourth largest contributor to air pollution and carbon emissions, particularly in coastal areas, and the growth rate makes the problem even more critical. Stringent international air pollution regulation and increasing fuel price paves the way for an alternative "green emission technology". Various fuel cells were analyzed with different combination of fuel, electrolyte and electrodes. From the analysis, it has been found that SOFC (Solid Oxide Fuel Cell) is most suitable for the present scenario. A fuel cell designed with hydrogen as fuel, zirconium oxides stabilized with yttrium oxide as electrolyte and zirconium electrodes is used for 1.5 MW power output and 0.5 MW through regenerator. Volume required for storage of hydrogen is in line with volume of fuel and a high standard safety measures were taken using sensors. The present system saves 3000 MT/annum of diesel oil costing 3,000,000 USD approximately.