A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-co...A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.展开更多
Modeling and simulation of two different microturbine (MT) models to analyze load following performance as distributed energy resource (DER) have been presented in this paper. The first model consists of speed gov...Modeling and simulation of two different microturbine (MT) models to analyze load following performance as distributed energy resource (DER) have been presented in this paper. The first model consists of speed governor, acceleration control, and temperature control blocks while the other is GAST model. The system comprises a synchronous generator and a MT coupled to it. Simulations are carried out in islanded and grid-connected mode to observe the system response when supplying variable loads. The load following characteristics is observed and validated for this MT-synchronous generator model in Matlab-Simulink environment. This is applicable with combined heat power (CHP) generators both with general fuel as well as bio-fuels. The use of bio-fuels is very much promising for generating green power preventing green house gas emissions for fighting against global warming.展开更多
A cogeneration plant can run at off-design due to change of load demand or ambient conditions. The cogeneration considered for this study is gas turbine based engine consists of variable stator vanes (VSVs) compress...A cogeneration plant can run at off-design due to change of load demand or ambient conditions. The cogeneration considered for this study is gas turbine based engine consists of variable stator vanes (VSVs) compressor that are re-staggered for loads greater than 50% to maintain the gas turbine exhaust gas temperature at the set value. In order to evaluate the exergetic performance of the cogeneration, exergy model of each cogeneration component is formulated. A 4.2 MW gas turbine based cogeneration plant is analysed for a wide range of part load operations including the effect of VSVs modulation. For loads less than 50%, the major exergy destruction contributors are the combustor and the loss with the stack gas. At full load, the exergy destructions in the combustor, turbine, heat recovery, compressor and the exergy loss with stack gas are 63.7, 14.1, 11.5, 5.7, and 4.9%, respectively. The corresponding first and second law cogeneration efficiencies are 78.5 and 45%, respectively. For comparison purpose both the first and second law efticiencies of each component are represented together. This analysis would help to identify the equipment where the potential for performance improvement is high, and trends which may aid in the design of future plants.展开更多
Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally.In the investigation,an emphasis is placed upon the external flue gas recirculation,which is...Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally.In the investigation,an emphasis is placed upon the external flue gas recirculation,which is a promising technology for increasing the efficiency of the carbon capture and storage process,which,however,can change the combustion behaviour significantly.A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas.Flames are also investigated numerically using the open source CFD software OpenFOAM.In the numerical simulations,a laminar flamelet model based on mixture fraction and reaction progress variable is adopted.As turbulence model,the SST model is used within a URANS concept.Computational results are compared with the experimental data,where a fair agreement is observed.展开更多
文摘A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.
文摘Modeling and simulation of two different microturbine (MT) models to analyze load following performance as distributed energy resource (DER) have been presented in this paper. The first model consists of speed governor, acceleration control, and temperature control blocks while the other is GAST model. The system comprises a synchronous generator and a MT coupled to it. Simulations are carried out in islanded and grid-connected mode to observe the system response when supplying variable loads. The load following characteristics is observed and validated for this MT-synchronous generator model in Matlab-Simulink environment. This is applicable with combined heat power (CHP) generators both with general fuel as well as bio-fuels. The use of bio-fuels is very much promising for generating green power preventing green house gas emissions for fighting against global warming.
文摘A cogeneration plant can run at off-design due to change of load demand or ambient conditions. The cogeneration considered for this study is gas turbine based engine consists of variable stator vanes (VSVs) compressor that are re-staggered for loads greater than 50% to maintain the gas turbine exhaust gas temperature at the set value. In order to evaluate the exergetic performance of the cogeneration, exergy model of each cogeneration component is formulated. A 4.2 MW gas turbine based cogeneration plant is analysed for a wide range of part load operations including the effect of VSVs modulation. For loads less than 50%, the major exergy destruction contributors are the combustor and the loss with the stack gas. At full load, the exergy destructions in the combustor, turbine, heat recovery, compressor and the exergy loss with stack gas are 63.7, 14.1, 11.5, 5.7, and 4.9%, respectively. The corresponding first and second law cogeneration efficiencies are 78.5 and 45%, respectively. For comparison purpose both the first and second law efticiencies of each component are represented together. This analysis would help to identify the equipment where the potential for performance improvement is high, and trends which may aid in the design of future plants.
文摘Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally.In the investigation,an emphasis is placed upon the external flue gas recirculation,which is a promising technology for increasing the efficiency of the carbon capture and storage process,which,however,can change the combustion behaviour significantly.A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas.Flames are also investigated numerically using the open source CFD software OpenFOAM.In the numerical simulations,a laminar flamelet model based on mixture fraction and reaction progress variable is adopted.As turbulence model,the SST model is used within a URANS concept.Computational results are compared with the experimental data,where a fair agreement is observed.