Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and cataly...Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and catalysts,and operating conditions of the reactor and regenerator.Some countermeasures were proposed for preventing scale deposition in flue gas turbine of FCCU.展开更多
The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for ...The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.展开更多
This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as th...This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given.展开更多
The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate ...The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate and compare the efficiency of the device. A test bench has been assembled with the available equipment in the laboratory of the department of mechanical and aerospace engineering in Roma. By using the software supplied by the manufacturer, the evaluation of the operating performance of the device at different speeds has been performed, obtaining all the values of interest.展开更多
The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to s...The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.展开更多
The increasing use of gas turbines in combined cycle power plants together with the high amount of kinetic energy in modem gas turbine exhaust flows focuses attention on the design of gas turbine diffusers as the conn...The increasing use of gas turbines in combined cycle power plants together with the high amount of kinetic energy in modem gas turbine exhaust flows focuses attention on the design of gas turbine diffusers as the connecting part between the Brayton/Joule and the Rankine parts of the combined cycle. A scale model of a typical gas turbine exhaust diffuser is investigated experimentally. The test rig consists of a radial type, variable swirl generator which provides the exhaust flow corresponding to different gas turbine operating conditions. Static pressure measurements are carried out along the outer diffuser walls and along the hub of the annular part and along the centerline of the conical diffuser. Velocity distributions at several axial positions in the annular and conical diffuser have been measured using a Laser Doppler Velocimeter (LDV). Pressure recovery coefficients and velocity profiles are depicted as a function of diffuser length for several combinations of swirl strength, tip flow and strut geometries. The diffuser without struts achieved a higher pressure recovery than the diffuser with struts at all swirl angle settings. The diffuser with cylindrical struts achieved a higher pressure recovery than the diffuser with profiled struts at all swirl angle seO.ings. Inlet flows with swirl angles over 18° affected the pressure recovery negatively for all strut configurations.展开更多
In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas tur-bine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator...In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas tur-bine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator is in the order of 25 %, but the efficiency of a very small gas turbine (2...6 kW) in the order of 4...6 % (or 8... 12 % with an op- timal recuperator). This is mainly a result of the efficiency decrease in kinetic compressors, due to the Reynolds number effect. Losses in decelerating flow in a flow passage are sensitive to the Reynolds number effects. In con- trary to the compression, the efficiency of expansion in turbines is not so sensitive to the Reynolds number; very small turbines are made with rather good efficiency because the flow acceleration stabilizes the boundary layer. This study presents a system where the kinetic compressor of a gas turbine is replaced with a pulse combustor. The combustor is filled with a combustible gas mixture, ignited, and the generated high pressure gas is expanded in the turbine. The process is repeated frequently, thus producing a pulsating flow to the turbine; or almost a uni- form flow, if several parallel combustors are used and triggered a/ternately in a proper way. Almost all the com- pression work is made by the temperature increase from the combustion. This gas turbine type is investigated theoretically and its combustor also experimentally with the conclusion that in a 2 kW power size, the pulse flow gas turbine is not as attractive as expected due to the big size and weight of parallel combustors and due to the ef- ficiency being in the order of 8 % to 10 %. However, in special applications having a very low power demand, below 1000 W, this solution has better properties when compared to the conventional gas turbine and it could be worth of a more detailed investigation.展开更多
In order to establish the design methodology of an ultra micro centrifugal compressor, which is the most important component of an ultra micro gas turbine unit, a 10 times size of the final target compressor (impelle...In order to establish the design methodology of an ultra micro centrifugal compressor, which is the most important component of an ultra micro gas turbine unit, a 10 times size of the final target compressor (impeller outer diameter 40 mm, corrected rotational speed 220,000 r/min) was designed. The problems to be solved for downsizing were examined and a 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method and CFD were used. The prototyped compressor was tested by using cold air at the reduced speed of 110,000 r/min. Following to the 10 times model, a 5 times size of the final target model having fully 3-dimensional shape (impeller outer diameter 20mm, corrected rotational speed 500,000 r/min) was designed and tested by using hot gas at the reduced speed of 250,000 r/min.展开更多
An increase of turbine blade loading can reduce the numbers of blade and stage of gas turbines. However, an increase of blade loading makes the secondary flow much stronger because of the steep pitch-wise pressure gra...An increase of turbine blade loading can reduce the numbers of blade and stage of gas turbines. However, an increase of blade loading makes the secondary flow much stronger because of the steep pitch-wise pressure gradient in the cascade passage, and consequently deteriorates the turbine efficiency. In this study, the computations were performed for the flow in an ultra-highly loaded turbine cascade with high turning angle in order to clarify the effects of the incidence angle on the two dimensional flow and the secondary flow in the cascade passage, which cause the profile loss and the secondary loss, respectively. The computed results showed good agreement with the experimental surface oil flow visualizations and the blade surface static pressure at mid-span of the blade. The profile loss was strongly increased by the increase of incidence angle especially in the positive range. Moreover, the positive incidences not only strengthened the horseshoe vortex and the passage vortex but also induced a new vortex on the end-wall. Moreover, the newly formed vortex influenced the formation of the pressure side leg of horseshoe vortex.展开更多
The aerodynamic performance, structural strength, and wheel weight are three important factors in the design process of the radial turbine for micro gas turbines. This study presents the experimental validation proces...The aerodynamic performance, structural strength, and wheel weight are three important factors in the design process of the radial turbine for micro gas turbines. This study presents the experimental validation process of this integrated optimization design method by using the similarity theory. Cold modeling tests and investigations into the aerodynamic characteristics were performed. Experimental results showed that the aerodynamic efficiency of the micro radial turbine is 84.3% at the design point while also satisfying the aerodynamic and strength requirements. Meanwhile, the total weight of the turbine wheel is 3.8 kg which has only a 52.8% mass of the original design. This indicates that the radial turbine designed through this technique has a high aerodynamic performance, and thus can be applied to micro gas turbines. The results validated that this integrated optimization design method is reliable.展开更多
This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat t...This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat transfer coefficients on the flat tip of the HP turbine rotor blade in the GE-E3 aircraft engine with the corresponding ex- perimental data, the K:-o~ turbulence model was chosen for the present numerical simulations. The inlet and outlet boundary conditions for the turbine rotor blade are specified as the real gas turbine, which were obtained from the 3D full stage simulations. The rotor blade and the hub endwall are rotary and the casing is stationary. The influ- ences of tip configurations on the tip leakage flow and blade tip heat transfer were discussed. It's showed that the different tip configurations changed the leakage flow patterns and the pressure distributions on the suction surface near the blade tip. Compared with the flat tip, the total pressure loss caused by the leakage flow was decreased for the full squealer tip and pressure side squealer tip, while increased for the suction side squealer tip. The suction side squealer tip results in the lowest averaged heat transfer coefficient on the blade tip compared to the other tip configurations.展开更多
文摘Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and catalysts,and operating conditions of the reactor and regenerator.Some countermeasures were proposed for preventing scale deposition in flue gas turbine of FCCU.
文摘The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.
文摘This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given.
文摘The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate and compare the efficiency of the device. A test bench has been assembled with the available equipment in the laboratory of the department of mechanical and aerospace engineering in Roma. By using the software supplied by the manufacturer, the evaluation of the operating performance of the device at different speeds has been performed, obtaining all the values of interest.
文摘The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.
文摘The increasing use of gas turbines in combined cycle power plants together with the high amount of kinetic energy in modem gas turbine exhaust flows focuses attention on the design of gas turbine diffusers as the connecting part between the Brayton/Joule and the Rankine parts of the combined cycle. A scale model of a typical gas turbine exhaust diffuser is investigated experimentally. The test rig consists of a radial type, variable swirl generator which provides the exhaust flow corresponding to different gas turbine operating conditions. Static pressure measurements are carried out along the outer diffuser walls and along the hub of the annular part and along the centerline of the conical diffuser. Velocity distributions at several axial positions in the annular and conical diffuser have been measured using a Laser Doppler Velocimeter (LDV). Pressure recovery coefficients and velocity profiles are depicted as a function of diffuser length for several combinations of swirl strength, tip flow and strut geometries. The diffuser without struts achieved a higher pressure recovery than the diffuser with struts at all swirl angle settings. The diffuser with cylindrical struts achieved a higher pressure recovery than the diffuser with profiled struts at all swirl angle seO.ings. Inlet flows with swirl angles over 18° affected the pressure recovery negatively for all strut configurations.
基金the Finnish Funding Agency for Technology and Innovation(Tekes),T-Turbine Oy,AXCO-Motors Oy and Veneveist m Pauniaho Oy for supporting this work
文摘In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas tur-bine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator is in the order of 25 %, but the efficiency of a very small gas turbine (2...6 kW) in the order of 4...6 % (or 8... 12 % with an op- timal recuperator). This is mainly a result of the efficiency decrease in kinetic compressors, due to the Reynolds number effect. Losses in decelerating flow in a flow passage are sensitive to the Reynolds number effects. In con- trary to the compression, the efficiency of expansion in turbines is not so sensitive to the Reynolds number; very small turbines are made with rather good efficiency because the flow acceleration stabilizes the boundary layer. This study presents a system where the kinetic compressor of a gas turbine is replaced with a pulse combustor. The combustor is filled with a combustible gas mixture, ignited, and the generated high pressure gas is expanded in the turbine. The process is repeated frequently, thus producing a pulsating flow to the turbine; or almost a uni- form flow, if several parallel combustors are used and triggered a/ternately in a proper way. Almost all the com- pression work is made by the temperature increase from the combustion. This gas turbine type is investigated theoretically and its combustor also experimentally with the conclusion that in a 2 kW power size, the pulse flow gas turbine is not as attractive as expected due to the big size and weight of parallel combustors and due to the ef- ficiency being in the order of 8 % to 10 %. However, in special applications having a very low power demand, below 1000 W, this solution has better properties when compared to the conventional gas turbine and it could be worth of a more detailed investigation.
文摘In order to establish the design methodology of an ultra micro centrifugal compressor, which is the most important component of an ultra micro gas turbine unit, a 10 times size of the final target compressor (impeller outer diameter 40 mm, corrected rotational speed 220,000 r/min) was designed. The problems to be solved for downsizing were examined and a 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method and CFD were used. The prototyped compressor was tested by using cold air at the reduced speed of 110,000 r/min. Following to the 10 times model, a 5 times size of the final target model having fully 3-dimensional shape (impeller outer diameter 20mm, corrected rotational speed 500,000 r/min) was designed and tested by using hot gas at the reduced speed of 250,000 r/min.
文摘An increase of turbine blade loading can reduce the numbers of blade and stage of gas turbines. However, an increase of blade loading makes the secondary flow much stronger because of the steep pitch-wise pressure gradient in the cascade passage, and consequently deteriorates the turbine efficiency. In this study, the computations were performed for the flow in an ultra-highly loaded turbine cascade with high turning angle in order to clarify the effects of the incidence angle on the two dimensional flow and the secondary flow in the cascade passage, which cause the profile loss and the secondary loss, respectively. The computed results showed good agreement with the experimental surface oil flow visualizations and the blade surface static pressure at mid-span of the blade. The profile loss was strongly increased by the increase of incidence angle especially in the positive range. Moreover, the positive incidences not only strengthened the horseshoe vortex and the passage vortex but also induced a new vortex on the end-wall. Moreover, the newly formed vortex influenced the formation of the pressure side leg of horseshoe vortex.
基金the National Natural Science Foundation of China,the China Postdoctoral Science Founda-tion
文摘The aerodynamic performance, structural strength, and wheel weight are three important factors in the design process of the radial turbine for micro gas turbines. This study presents the experimental validation process of this integrated optimization design method by using the similarity theory. Cold modeling tests and investigations into the aerodynamic characteristics were performed. Experimental results showed that the aerodynamic efficiency of the micro radial turbine is 84.3% at the design point while also satisfying the aerodynamic and strength requirements. Meanwhile, the total weight of the turbine wheel is 3.8 kg which has only a 52.8% mass of the original design. This indicates that the radial turbine designed through this technique has a high aerodynamic performance, and thus can be applied to micro gas turbines. The results validated that this integrated optimization design method is reliable.
基金supported by the National 973 Program of China through grant number 2007CB210108
文摘This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat transfer coefficients on the flat tip of the HP turbine rotor blade in the GE-E3 aircraft engine with the corresponding ex- perimental data, the K:-o~ turbulence model was chosen for the present numerical simulations. The inlet and outlet boundary conditions for the turbine rotor blade are specified as the real gas turbine, which were obtained from the 3D full stage simulations. The rotor blade and the hub endwall are rotary and the casing is stationary. The influ- ences of tip configurations on the tip leakage flow and blade tip heat transfer were discussed. It's showed that the different tip configurations changed the leakage flow patterns and the pressure distributions on the suction surface near the blade tip. Compared with the flat tip, the total pressure loss caused by the leakage flow was decreased for the full squealer tip and pressure side squealer tip, while increased for the suction side squealer tip. The suction side squealer tip results in the lowest averaged heat transfer coefficient on the blade tip compared to the other tip configurations.